Bioequivalence and Bioavailability Forum 12:48 CET

Main page Policy/Terms of Use Abbreviations Latest Posts

 Log in |  Register |  Search

Diagnostics: R and Phoenix [Study As­sess­ment]

posted by Helmut Homepage - Vienna, Austria, 2016-05-18 15:14  - Posting: # 16324
Views: 12,937

Hi ElMaestro et al.,

» Extract some model diagnostics: DF's and LogLikelihood, and compare to find out which result is the better candidate.

I can only provide the results of R and Phoenix:

R 3.2.5
library(nlme)
Subj   <- c(1, 2, 4, 5, 6, 4, 5, 6, 7, 8, 9, 7, 8, 9)
Dose   <- c(25, 25, 50, 50, 50, 250, 250, 250, 75, 75, 75, 250, 250, 250)
AUC    <- c(326.40, 437.82, 557.47, 764.85, 943.59, 2040.84, 2989.29,
            4107.58, 1562.42, 982.02, 1359.68, 3848.86, 4333.10, 3685.55)
Cmax   <- c(64.82, 67.35, 104.15, 143.12, 243.63, 451.44, 393.45,
            796.57, 145.13, 166.77, 296.90, 313.00, 387.00, 843.00)
resp   <- data.frame(Subj, Dose, Cmax, AUC)
resp$Subj <- factor(resp$Subj)
muddle <- lme(log(Cmax) ~ log(Dose), data=resp, random=~1|Subj)
sum.muddle <- summary(muddle)
CI.muddle  <- intervals(muddle, level=0.9, which="fixed")
print(sum.muddle); CI.muddle$fixed[, ]
Linear mixed-effects model fit by REML
 Data: resp
       AIC      BIC    logLik
  14.24355 16.18317 -3.121774

Random effects:
 Formula: ~1 | Subj
        (Intercept)  Residual
StdDev:   0.3347319 0.1206792

Fixed effects: log(Cmax) ~ log(Dose)
                Value  Std.Error DF   t-value p-value
(Intercept) 1.9413858 0.24314072  7  7.984618   1e-04
log(Dose)   0.7617406 0.04727976  5 16.111347   0e+00
 Correlation:
          (Intr)
log(Dose) -0.863

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max
-1.07547728 -0.35579449 -0.03301391  0.45088601  0.91853654

Number of Observations: 14
Number of Groups: 8
                lower      est.     upper
(Intercept) 1.4807366 1.9413858 2.4020350
log(Dose)   0.6664696 0.7617406 0.8570116


Phoenix 6.47.0.768
Model Specification and User Settings
       Dependent variable : logCmax
                Transform : None
              Fixed terms : int+logDose
    Random/repeated terms : Subject
    Denominator df option : satterthwaite

Class variables and their levels
                  Subject :    1   2   4   5   6   7   8   9

Final variance parameter estimates:
             Var(Subject)    0.112045
            Var(Residual)    0.0145635

     REML log(likelihood)   -0.623363
 -2* REML log(likelihood)    1.24673
 Akaike Information Crit.    9.24673
   Schwarz Bayesian Crit.   11.1864

   Effect:Level Estimate   StdError Denom_DF  T_stat  P_value Conf T_crit  Lower_CI  Upper_CI
---------------------------------------------------------------------------------------------
           int  1.9413858 0.2431407   9.2    7.98462 1.980E-5   90  1.829 1.4967592 2.3860125
logDose:logDose 0.7617406 0.0472798   5.9   16.11135 4.241E-6   90  1.949 0.6695783 0.8539029


Estimates and their SEs are exactly the same. CIs are not (due to different DFs?).


PS: An ideas how to weight by 1/log(Dose) in lme()? Suggested by Chow/Liu and gives me a better fit in Phoenix.

Cheers,
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. ☼
Science Quotes

Complete thread:

Activity
 Mix view
Bioequivalence and Bioavailability Forum |  Admin contact
19,032 posts in 4,059 threads, 1,299 registered users;
online 15 (1 registered, 14 guests [including 11 identified bots]).

When a distinguished but elderly scientist states that
something is possible, he is almost certainly right.
When he states that something is impossible,
he is very probably wrong.    Arthur C. Clarke

The BIOEQUIVALENCE / BIOAVAILABILITY FORUM is hosted by
BEBAC Ing. Helmut Schütz
HTML5 RSS Feed