Kenward-Roger? [Study As­sess­ment]

posted by Helmut Homepage – Vienna, Austria, 2016-05-28 15:59  – Posting: # 16369
Views: 14,243

Hi Angus,

» Jerry from NCSS reports the following:
»
» We have looked into this and resolved it in our own minds. NCSS uses the Kenwood-Rogers method for degrees of freedom which is an extension of the Satterthwaite method.

Really? Still I can’t reproduce results of NCSS in R (data prepared like in this post).

library(lmerTest)
library(pbkrtest)
muddle   <- lmer(log(Cmax) ~ log(Dose) + (1|Subj), data=resp)
sum.Satt <- summary(muddle, ddf="Satterthwaite")
res.Satt <- data.frame(0:1, sum.Satt$coeff[ , "Estimate"],
                       sum.Satt$coeff[, 2],
                       sum.Satt$coeff[, 3],
                       sum.Satt$coeff[, 1]-
                       qt(1-0.05, sum.Satt$coeff[, 3])*
                       sum.Satt$coeff[, 2],
                       sum.Satt$coeff[, 1]+
                       qt(1-0.05, sum.Satt$coeff[, 3])*
                       sum.Satt$coeff[, 2],
                       row.names=NULL)
sum.KR <- summary(muddle, ddf="Kenward-Roger")
res.KR <- data.frame(0:1, sum.KR$coeff[ , "Estimate"],
                     sum.KR$coeff[, 2],
                     sum.KR$coeff[, 3],
                     sum.KR$coeff[, 1]-
                     qt(1-0.05, sum.KR$coeff[, 3])*
                     sum.KR$coeff[, 2],
                     sum.KR$coeff[, 1]+
                     qt(1-0.05, sum.KR$coeff[, 3])*
                     sum.KR$coeff[, 2],
                     row.names=NULL)
names(res.KR) <- names(res.Satt) <- c("B", "PE", "SE", "df",
                                      "CLlower", "CLupper")
print(round(res.Satt, 4), row.names=FALSE)
print(round(res.KR, 4), row.names=FALSE)


Satterthwaite
B   PE     SE     df   CLlower CLupper
0 1.9414 0.2431 9.1956  1.4968  2.3860
1 0.7617 0.0473 5.8961  0.6696  0.8539

Kenward-Roger
B   PE     SE     df   CLlower CLupper
0 1.9414 0.2431 9.0915  1.4962  2.3866
1 0.7617 0.0473 5.7527  0.6692  0.8543


Modified results of NCSS from a previous posts:
B   PE     SE     df   CLlower CLupper
0 1.9414 0.2496 9.2     1.4849  2.3978
1 0.7617 0.0492 5.9     0.6659  0.8576


As zizou suspected in this post there are differences in the SEs (therefore, we get different CIs even if DFs are identical) – which leaves the question open why they are different when compared to the other packages. NCCS seems to use Satterthwaite’s DFs and not Kenward-Roger’s (contrary to the documentation and what Jerry told you).

Cheers,
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. ☼
Science Quotes

Complete thread:

Activity
 Mix view
Bioequivalence and Bioavailability Forum |  Admin contact
19,437 posts in 4,125 threads, 1,325 registered users;
online 5 (1 registered, 4 guests [including 4 identified bots]).
Forum time (Europe/Vienna): 02:04 CEST

On two occasions I have been asked,—“Pray, Mr. Babbage,
if you put into the machine wrong figures,…
will the right answers come out?”

I am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.    Charles Babbage

The BIOEQUIVALENCE / BIOAVAILABILITY FORUM is hosted by
BEBAC Ing. Helmut Schütz
HTML5