A rant [Two-Stage / GS Designs]

posted by Helmut Homepage – Vienna, Austria, 2024-08-26 14:52 (21 d 16:54 ago) – Posting: # 24160
Views: 787

To whom it may concern.

With ICH M13C on the horizon (initial work is expected to start in December 2024), a publication [1] come to my attention. A great review outlining the current approaches and conditions in various jurisdictions. However, I think that the authors erred in one specific case, which I give below in part. I changed only the numbering of references and added two [5, 9] which are missing in this section of the discussion (pages 14–15 of the PDF).
Some comments:At the end of the discussion we find:
We presented the exact method in two posters [20, 21] but were too lazy to write a paper. We wear the black belt in procrastination. A col­league of Byron Jones noticed our 2015 poster and conveyed its content. Thus it is referenced in [9].
I became interested in adaptive designs for bioequivalence almost thirty years ago [22, 23]. It is disheartening to observe the lack of advancement and the prevalence of misinterpretations of methods [24].


  1. Freitas Fernandes EA, van Oudtshoorn J, Tam A, Arévalo González LA, Aurela EG, Potthast H, Mettke K, Kuribayashi R, Shimojo K, Kasuga M, Morales L, Rodríguez Z, Jones B, Ahn C, Yun E, Kim SH, Rodrigues C, Tiong T, Crane C, Walther C, Roost MS, Chen T-L, Hsu L-f, Braddy AC, García-Arieta A, Abalos I, Divinsky M, Alsuwyeh A, Alzenaidy B, Alhar A. The bioequivalence study design recommendations for immediate-release solid oral dosage forms in the international pharmaceutical regulators programme participat­ing regulators and organisations: differences and commonalities. J Pharm Pharma­ceut Sci. 2024; 27: 12398. doi:10.3389/jpps.2024.12398
  2. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977; 64(2): 191–9. doi:10.2307/2335684
  3. EMA (CHMP). Guideline on the Investigation of Bioequivalence. London. 20 January 2010.
  4. Kieser M, Rauch G. Two-stage designs for cross-over bioequivalence trials. Stat Med. 2015; 34(16): 2403–16. doi:10.1002/sim.6487
  5. WHO Expert Committee on Specifications for Pharmaceutical Preparations. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability. Fifty-first report. Technical Report Series, No. 992, Annex 6. Geneva. April 2017.
  6. Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, Smith RA. Sequential design approaches for bio­equi­va­lence studies with crossover designs. Pharm Stat. 2008; 7: 245–62. doi:10.1002/pst.294.
  7. Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, DJ Schuirmann DJ. Additional results for ‘Sequential design ap­proach­es for bioequivalence studies with crossover designs’. Pharm Stat. 2011; 11: 8–13. doi:10.1002/pst.483
  8. Xu J, Audet C, DiLiberti CE, Hauck WW, Montague TH, Parr TH, Potvin D, Schuirmann DJ. Optimal adaptive sequential designs for crossover bioequivalence studies. Pharm Stat. 2016; 15(1): 15–27. doi:10.1002/pst.1721
  9. Maurer W, Jones B, Chen Y. Controlling the type 1 error rate in two-stage sequential designs when testing for average bioequivalence. Stat Med. 2018; 37(10): 1–21. doi:10.1002/sim.7614.
  10. South African Health Products Regulatory Authority. Quality and Bioequivalence Guideline. Pretoria. 2023.
  11. Lee J, Feng K, Xu M, Gong X, Sun W, Kim J, Zhang Z, Wang M, Fang L, Zhao L. Applications of adaptive designs in generic drug development. Clin Pharm Ther. 2020; 110(1): 32–5. doi:10.1002/cpt.2050
  12. Jiang X. Adaptive design and alpha adjustment: FDA position. Pre­sen­ta­tion at: 5th GBHI conference. Amsterdam. 28 September 2022.
  13. Kaza M, Sokolowki A, Rudzki PJ. 10th Anniversary of a Two-Stage Design in Bioequivalence. Why Has it Still Not Been Implemented? Pharm Res. 2020; 37(7): 140, doi:10.1007/s11095-020-02871-3
  14. Urach S. Two stage Designs and their Acceptability in the EC Area. Pre­sen­ta­tion at: 6th International Workshop – GBHI 2024. Rock­ville, MD. 16 April 2024.
  15. Labes D, Lang B, Schütz H. Power2Stage: Power and Sample-Size Distribution of 2-Stage Bioequivalence Studies. Package version 0.5-4. 2021-11-20. https://cran.r-project.org/package=Power2Stage
  16. Fuglsang A. Sequential Bioequivalence Approaches for Parallel Design. AAPS J. 2014; 16(3): 373–8. doi:10.1208/s12248-014-9571-1
  17. Schütz H. Novel approaches in adaptive designs and α adjustment, e.g., with futility criteria and for parallel design studies. Pre­sen­ta­tion at: 5th GBHI conference. Amsterdam. 28 September 2022.
  18. Fuglsang A. Sequential Bioequivalence Trial Designs with Increased Power and Con­trolled Type I Error Rates. AAPS J. 2013; 15: 659–61. doi:10.1208/s12248-013-9475-5
  19. Molins E, Labes D, Schütz H, Cobo E, Ocaña J. An iterative method to protect the type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover designs. Biom J. 2021; 63(1): 122–33. doi:10.1002/bimj.201900388
  20. König F, Wolfsegger M, Jaki T, Schütz H, Wassmer G. Adaptive two-stage bioequivalence trials with early stopping and sample size re-estimation. Vienna: 2014; 35th Annual Conference of the International Society for Clinical Biostatistics. Poster P1.2.88. doi:10.13140/RG.2.1.5190.0967
  21. König F, Wolfsegger M, Jaki T, Schütz H, Wassmer G. Adaptive two-stage bioequivalence trials with early stopping and sample size re-estimation. Trials. 2015; 16(Suppl 2); P218. doi:10.1186/1745-6215-16-S2-P218
  22. Gould AL. Group Sequential Extensions of a Standard Bioequivalence Testing Procedure. J Phar­ma­co­kin Bio­pharm. 1995; 23(1): 57–86. doi:10.1007/bf02353786
  23. Hauck WW, Preston PE, Bois FY. A group sequential approach to crossover trials for average bioequivalence. J of Biopharm Stat. 1997; 7(1): 87-96. doi:10.1080/10543409708835171
  24. Schütz H. Two-stage designs in bioequivalence trials. Eur J Clin Pharmacol. 2015; 71(3): 271–81. doi:10.1007/s00228-015-1806-2

[image]-scripts:

  1. Comparison of fixed sample (n) and GSD (N):
    library(PowerTOST)
    alpha  <- c(0.05, 0.0304) # 2nd element: Pocock’s for equivalence, parallel design
    theta0 <- 0.90            # reasonable, given the high CVs
    CV     <- seq(0.3, 0.5, 0.05)
    x      <- data.frame(CV = CV, n = NA_integer_, N =  NA_integer_)
    for (j in seq_along(CV)) {
      x$n[j] <- sampleN.TOST(alpha = alpha[1], CV = CV[j], theta0 = theta0,
                             design = "parallel", print = FALSE)[["Sample size"]]
      x$N[j] <- sampleN.TOST(alpha = alpha[2], CV = CV[j], theta0 = theta0,
                             design = "parallel", print = FALSE)[["Sample size"]]
    }
    x$penalty   <- sprintf("%+.2f%%", 100 * (x$N / x$n - 1))
    names(x)[4] <- "n to N"
    print(x, row.names = FALSE)


  2. Misspecification of GMR and power in method B (only valid for GMR 0.95 and power 80%) by Maurer et al. in Figure 6, correct alphas are 0.0262 in both stages. Assessment of the exact method by one mio simulations for comparison.
    library(Power2Stage)
    x <- data.frame(setup = c("Potvin et al. [6] method B",
                              "Molins et al. [19] Type 1",
                              "Maurer et al. [9] Figure 5",
                              "Maurer et al. [9] Figure 6",
                              "Molins et al. [19] Type 1",
                              "Maurer et al. [9]"),
                    CV = rep(0.4, 6), n1 = rep(36, 6),
                    alpha = c(0.0294, 0.0301, NA, 0.0294, 0.0262, NA),
                    GMR = c(rep(0.95, 3), rep(0.85, 3)),
                    power = c(rep(0.8, 3), rep(0.9, 3)))
    for (j in 1:6) {
      if (j %in% c(1:2, 4:5)) { # method B  / Type 1
        x$TIE[j] <- power.tsd(method = "B", alpha = rep(x$alpha[j], 2),
                              CV = x$CV[j], n1 = x$n1[j], GMR = x$GMR[j],
                              theta0 = 0.8, targetpower = x$power[j])$pBE
      } else {                  # Maximum Combination Test with futility
        y          <- power.tsd.in(CV = x$CV[j], n1 = x$n1[j], GMR = x$GMR[j],
                                   theta0 = 0.8, targetpower = x$power[j])
        x$alpha[j] <- signif(y$alpha[1], 3)
        x$TIE[j]   <- y$pBE
      }
    }
    x$TIE <- signif(x$TIE, 4)
    print(x, row.names = FALSE, right = FALSE)

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,225 posts in 4,879 threads, 1,654 registered users;
39 visitors (0 registered, 39 guests [including 9 identified bots]).
Forum time: 07:47 CEST (Europe/Vienna)

The real purpose of the scientific method is to make sure
nature hasn’t misled you into thinking you know something
you actually don’t know.    Robert M. Pirsig

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5