crap [Two-Stage / GS Designs]

posted by d_labes  – Berlin, Germany, 2020-02-16 20:34 (1079 d 11:13 ago) – Posting: # 21175
Views: 4,819

Dear Helmut,

❝ ...

$$\small{\begin{matrix}
\textsf{Name} & \textsf{Method} & \textsf{Type} & GMR & \pi & \alpha & CV & n_1 & E[N] & \text{TIE} & n_{2,min} & E[N] & \textsf{ANVISA} & \textsf{comp}\\\hline
\textsf{SLF} & \textsf{B} & 1 & 0.90 & 0.8 & 0.0272 & 0.20 & 12 & 40.8 & 0.04997 & 6 & 40.8 & 0.04999 & \textsf{higher}\\
\textsf{SLF} & \textsf{B} & 1 & 0.90 & 0.9 & 0.0268 & 0.22 & 16 & 60.3 & 0.04985 & 8 & 60.3 & 0.04977 & \textsf{lower}\\
\textsf{Potvin} & \textsf{B} & 1 & 0.95 & 0.8 & 0.0294 & 0.24 & 12 & 29.8 & 0.04876 & 6 & 29.9 & 0.04879 & \textsf{higher}\\
\textsf{Potvin-SLF} & \textsf{B} & 1 & 0.95 & 0.8 & 0.0302 & 0.24 & 12 & 29.5 & 0.04999 & 6 & 29.6 & 0.05020 & \textsf{higher}\\
\textsf{Fuglsang} & \textsf{B} & 1 & 0.95 & 0.9 & 0.0284 & 0.22 & 12 & 31.7 & 0.04960 & 6 & 31.7 & 0.04958 & \textsf{lower}\\
\textsf{Fuglsang-SLF} & \textsf{B} & 1 & 0.95 & 0.9 & 0.0286 & 0.22 & 12 & 31.6 & 0.04999 & 6 & 31.6 & 0.05032 & \textsf{higher}\\
\textsf{Montague} & \textsf{D} & 2 & 0.90 & 0.8 & 0.0280 & 0.20 & 12 & 40.3 & \color{Red}{0.05180} & 6 & 40.3 & \color{Red}{0.05181} & \textsf{higher}\\
\textsf{Montague-SLF} & \textsf{D} & 2 & 0.90 & 0.8 & 0.0268 & 0.18 & 12 & 32.7 & 0.04998 & 6 & 32.7 & 0.04980 & \textsf{lower}\\
\textsf{Fuglsang} & \textsf{C/D} & 2 & 0.90 & 0.9 & 0.0269 & 0.18 & 12 & 41.8 & 0.05021 & 6 & 41.8 & 0.05011 & \textsf{lower}\\
\textsf{Fuglsang-SLF} & \textsf{C/D} & 2 & 0.90 & 0.9 & 0.0266 & 0.18 & 12 & 42.0 & 0.04995 & 6 & 42.0 & 0.04967 & \textsf{lower}\\
\textsf{Potvin} & \textsf{C} & 2 & 0.95 & 0.8 & 0.0294 & 0.22 & 12 & 24.9 & \color{Red}{0.05143} & 6 & 24.9 & \color{Red}{0.05136} & \textsf{lower}\\
\textsf{Potvin-SLF} & \textsf{C} & 2 & 0.95 & 0.8 & 0.0282 & 0.10 & 16 & 16.0 & 0.05010 & 8 & 16.0 & 0.05010 & \textsf{equal}\\
\textsf{Fuglsang} & \textsf{C/D} & 2 & 0.95 & 0.9 & 0.0274 & 0.10 & 16 & 16.0 & 0.05010 & 8 & 16.0 & 0.05010 & \textsf{equal}\\
\textsf{Fuglsang-SLF} & \textsf{C/D} & 2 & 0.95 & 0.9 & 0.0275 & 0.20 & 12 & 25.8 & 0.04962 & 6 & 25.8 & 0.04985 & \textsf{higher}
\end{matrix}}$$

❝ TIE which is significantly >0.05 in red (limit of the binomial test 0.05036). I don’t understand why in some scenarios the TIE is lower with a minimum n2.

❝ Counterintuitive. :confused:


I'm quite sure: This is because of the simulation error. The differences of the TIE without and with min.n2 are so small. See the last column above.
Any try with a different seed of the random number generator may and will change the comparison.

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
22,477 posts in 4,708 threads, 1,603 registered users;
12 visitors (0 registered, 12 guests [including 4 identified bots]).
Forum time: 07:48 CET (Europe/Vienna)

The mediocre teacher tells.
The good teacher explains.
The superior teacher demonstrates.
The great teacher inspires.    William Arthur Ward

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5