crap [Two-Stage / GS Designs]

posted by Helmut Homepage – Vienna, Austria, 2020-02-16 14:43 (426 d 20:44 ago) – Posting: # 21173
Views: 3,605

Hi Mauricio,

» » If I’m in the right mood I’ll write letter to ANVISA. :-D
»
» PLEASE!!!!!:ok:
»
» Or make your official contribution on the website:
» http://formsus.datasus.gov.br/site/formulario.php?id_aplicacao=52824

No promises…

I played around around with published (and unpublished) methods. I used the noncentral t-distribution, whereas in the papers the shifted central t-distribution was used for speed reasons. One degree less in the sample size estimation because the stage-term is used in the pooled analysis. 100,000 simulations for the average total sample size E[N] and 1 mio for the empiric Type I Error. Narrow grid for CV (10–80%, step 2%), and n1 (12–72, step 2). The power/TIE surfaces are highly nonlinear; generally the maximum inflation is observed at a combination of low CV and small n1. The TIE is given for these locations (in the papers a wider grid with step sizes of 10% and 12 was used).
In the original methods no minimum stage 2 size; for the ANVISA I forced it to ≥ 50% n1. SLF refers to a manuscript by the usual Simul-Ants (Schütz, Labes, Fuglsang) we didn’t finish (rests in peace in my “dead dogs”-folder)…
        Name Method Type  GMR power  alpha   CV n1 E[N]     TIE min.n2 E[N]  ANVISA   comp
         SLF      B    1 0.90   0.8 0.0272 0.20 12 40.8 0.04997      6 40.8 0.04999 higher
         SLF      B    1 0.90   0.9 0.0268 0.22 16 60.3 0.04985      8 60.3 0.04977  lower
      Potvin      B    1 0.95   0.8 0.0294 0.24 12 29.8 0.04876      6 29.9 0.04879 higher
  Potvin-SLF      B    1 0.95   0.8 0.0302 0.24 12 29.5 0.04999      6 29.6 0.05020 higher
    Fuglsang      B    1 0.95   0.9 0.0284 0.22 12 31.7 0.04960      6 31.7 0.04958  lower
Fuglsang-SLF      B    1 0.95   0.9 0.0286 0.22 12 31.6 0.04999      6 31.6 0.05032 higher
    Montague      D    2 0.90   0.8 0.0280 0.20 12 40.3 0.05180      6 40.3 0.05181 higher
Montague-SLF      D    2 0.90   0.8 0.0268 0.18 12 32.7 0.04998      6 32.7 0.04980  lower
    Fuglsang    C/D    2 0.90   0.9 0.0269 0.18 12 41.8 0.05021      6 41.8 0.05011  lower
Fuglsang-SLF    C/D    2 0.90   0.9 0.0266 0.18 12 42.0 0.04995      6 42.0 0.04967  lower
      Potvin      C    2 0.95   0.8 0.0294 0.22 12 24.9 0.05143      6 24.9 0.05136  lower
  Potvin-SLF      C    2 0.95   0.8 0.0282 0.10 16 16.0 0.05010      8 16.0 0.05010  equal
    Fuglsang    C/D    2 0.95   0.9 0.0274 0.10 16 16.0 0.05010      8 16.0 0.05010  equal
Fuglsang-SLF    C/D    2 0.95   0.9 0.0275 0.20 12 25.8 0.04962      6 25.8 0.04985 higher


TIE which is significantly >0.05 in red (limit of the binomial test 0.05036). I don’t understand why in some scenarios the TIE is lower with a minimum n2.
Counterintuitive. :confused:


R-code:
library(Power2Stage)
even.n2 <- function(n1, pct) {
  ceiling(n1 * (1 + pct/100) / 2) * 2 - n1
}
alpha0 <- 0.05 # for type 2 designs
# locations of TIE (narrow grid)
CV     <- c(0.24, 0.24, 0.22, 0.10, 0.22, 0.22, 0.10, 0.20, 0.20,
            0.22, 0.20, 0.18, 0.18, 0.18)
n1     <- c(12, 12, 12, 16, 12, 12, 16, 12, 12, 16, 12, 12, 12, 12)
min.n2 <- even.n2(n1, 50)
cond   <- data.frame(Name = c(rep(c("Potvin", "Potvin-SLF"), 2),
                              rep(c("Fuglsang", "Fuglsang-SLF"), 2),
                              rep("SLF", 2), "Montague", "Montague-SLF",
                              "Fuglsang", "Fuglsang-SLF"),
                     Method = c(rep("B", 2), rep("C", 2), rep("B", 2),
                                rep("C/D", 2), rep("B", 2), rep("D", 2),
                                rep("C/D", 2)),
                     Type = c(rep(1, 2), rep(2, 2), rep(1, 2), rep(2, 2),
                              rep(1, 2), rep(2, 2), rep(2, 2)),
                     GMR = c(rep(0.95, 8), 0.90, 0.90, rep(0.90, 2),
                             rep(0.90, 2)),
                     power = c(rep(0.80, 4), rep(0.90, 4), 0.80, 0.90,
                               rep(0.80, 2), rep(0.90, 2)),
                     alpha = c(0.0294, 0.0302, 0.0294, 0.0282, 0.0284, 0.0286,
                               0.0274, 0.0275, 0.0272, 0.0268, 0.0280, 0.0268,
                               0.0269, 0.0266),
                     CV = CV, n1 = n1, stringsAsFactors = FALSE)
res    <- cbind(cond, ASN = NA, TIE = NA, min.n2 = min.n2, ASN.1 = NA,
                ANVISA = NA, comp = "equal", stringsAsFactors = FALSE)
for (j in 1:nrow(cond)) {
  ifelse (cond$Type[j] == 1, method <- "B", method <- "C")
  x1 <- power.tsd(method = method, alpha0 = alpha0,
                  alpha = rep(cond$alpha[j], 2), n1 = cond$n1[j],
                  GMR = cond$GMR[j], CV = cond$CV[j],
                  targetpower = cond$power[j])
  x2 <- power.tsd(method = method, alpha0 = alpha0,
                  alpha = rep(cond$alpha[j], 2), n1 = cond$n1[j],
                  GMR = cond$GMR[j], CV = cond$CV[j],
                  targetpower = cond$power[j], theta0 = 1.25)
  res$ASN[j] <- round(x1$nmean, 1)
  res$TIE[j] <- signif(x2$pBE, 4)
  y1 <- power.tsd(method = method, alpha0 = alpha0,
                  alpha = rep(cond$alpha[j], 2), n1 = cond$n1[j],
                  GMR = cond$GMR[j], CV = cond$CV[j],
                  targetpower = cond$power[j], min.n2 = res$min.n2[j])
  y2 <- power.tsd(method = method, alpha0 = alpha0,
                  alpha = rep(cond$alpha[j], 2), n1 = cond$n1[j],
                  GMR = cond$GMR[j], CV = cond$CV[j],
                  targetpower = cond$power[j], min.n2 = res$min.n2[j],
                  theta0 = 1.25)
  res$ASN.1[j]  <- round(y1$nmean, 1)
  res$ANVISA[j] <- signif(y2$pBE, 4)
}
names(res)[c(9, 12)] <- rep("E[N]", 2)
res$comp[which(res$ANVISA > res$TIE)] <- "higher"
res$comp[which(res$ANVISA < res$TIE)] <- "lower"
print(res[order(res$Type, res$GMR, res$power, res$Name, res$Method,
                decreasing = c(FALSE, FALSE, TRUE, FALSE, TRUE)), ],
      row.names = FALSE)

Dif-tor heh smusma 🖖
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

Activity
 Admin contact
21,419 posts in 4,475 threads, 1,509 registered users;
online 8 (0 registered, 8 guests [including 2 identified bots]).
Forum time: Sunday 11:27 UTC (Europe/Vienna)

Nothing fails like success because you do not learn anything from it.
The only thing we ever learn from is failure.
Success only confirms our superstitions.    Kenneth E. Boulding

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5