Kenward-Roger ≥ Satterthwaite [RSABE / ABEL]

posted by Helmut Homepage – Vienna, Austria, 2019-11-08 20:57  – Posting: # 20771
Views: 810

Hi PharmCat,

» I thought that Kenward-Roger provide the same DF as Satterthwaite's for one-dimension effects, so as CI for coefficient is one-dimension hypothesis DF should be the same, as it describes in reference paper, may be SAS make any corrections, I don't know...

Try this one:

library(replicateBE)
ds  <- substr(grep("rds", unname(unlist(data(package = "replicateBE"))),
                   value = TRUE), start = 1, stop = 5)
res <- data.frame(rds = 1:length(ds), df.Satt = NA, df.KR = NA)
for (j in seq_along(ds)) {
  res$df.Satt[j] <- method.B(option = 1, print = FALSE, details = TRUE,
                             data = eval(parse(text = ds[j])))$DF
  res$df.KR[j]   <- method.B(option = 3, print = FALSE, details = TRUE,
                             data = eval(parse(text = ds[j])))$DF
}
res[, 2:3] <- signif(res[, 2:3], 5)
print(res, row.names = FALSE)


The EMA’s Method B evaluated by lmer() of package lmerTest. Kenward-Roger’s degrees of freedom ≥ Satterthwaite’s.

Cheers,
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

Activity
 Admin contact
20,251 posts in 4,262 threads, 1,397 registered users;
online 23 (0 registered, 23 guests [including 9 identified bots]).
Forum time (Europe/Vienna): 19:26 CET

It requires a very unusual mind
to undertake the analysis of the obvious.    Alfred North Whitehead

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5