Kenward-Roger ≥ Satterthwaite [RSABE / ABEL]

posted by Helmut Homepage – Vienna, Austria, 2019-11-08 21:57 (1565 d 04:22 ago) – Posting: # 20771
Views: 8,334

Hi PharmCat,

❝ I thought that Kenward-Roger provide the same DF as Satterthwaite's for one-dimension effects, so as CI for coefficient is one-dimension hypothesis DF should be the same, as it describes in reference paper, may be SAS make any corrections, I don't know...


Try this one:

library(replicateBE)
ds  <- substr(grep("rds", unname(unlist(data(package = "replicateBE"))),
                   value = TRUE), start = 1, stop = 5)
res <- data.frame(rds = 1:length(ds), df.Satt = NA, df.KR = NA)
for (j in seq_along(ds)) {
  res$df.Satt[j] <- method.B(option = 1, print = FALSE, details = TRUE,
                             data = eval(parse(text = ds[j])))$DF
  res$df.KR[j]   <- method.B(option = 3, print = FALSE, details = TRUE,
                             data = eval(parse(text = ds[j])))$DF
}
res[, 2:3] <- signif(res[, 2:3], 5)
print(res, row.names = FALSE)


The EMA’s Method B evaluated by lmer() of package lmerTest. Kenward-Roger’s degrees of freedom ≥ Satterthwaite’s.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
22,899 posts in 4,806 threads, 1,651 registered users;
23 visitors (0 registered, 23 guests [including 7 identified bots]).
Forum time: 02:19 CET (Europe/Vienna)

Statistics is, or should be, about scientific investigation
and how to do it better, but many statisticians believe
it is a branch of mathematics.    George E.P. Box

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5