Geometric mean and CV [Power / Sample Size]

posted by Helmut Homepage – Vienna, Austria, 2019-09-06 20:15 (1861 d 02:07 ago) – Posting: # 20549
Views: 7,236

Hi Rocco,

❝ So basically your analysis follows from the fact that the variance of the difference of T and R equal the sum of the variance of T and the variance of R, correct?


Well, you have four variance components (s²wR, s²wT, s²bT, s²bR). Then
  1. Full replicate designs
    All are identifiable.
  2. 2×2×2 crossover (balanced and complete for simplicity – otherwise, weighting is required)
    s²w = (s²wR + s²wT)/2 and s²b = (s²bT + s²bR)/2.
  3. 2 group parallel
    Only the pooled (total) s²p. With a tricky mixed-effects model you could get s²pT and s²pR.
  4. One treatment (FIM)
    Only s²p.
Hence, if you want to plan #3 based on #4 you have to assume that the variances (within, between) of T and R are at least similar. ;-)

❝ And you are using the geometric CV as the estimate of CVp for R?


Yes.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,249 posts in 4,885 threads, 1,652 registered users;
88 visitors (0 registered, 88 guests [including 11 identified bots]).
Forum time: 22:22 CEST (Europe/Vienna)

The rise of biometry in this 20th century,
like that of geometry in the 3rd century before Christ,
seems to mark out one of the great ages or critical periods
in the advance of the human understanding.    R.A. Fisher

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5