function sampleN.TOST of package PowerTOST [Power / Sample Size]
❝ […]There are four-treatments (2xreference dosages & 2xtreatment dosages) & I plan to use the Williams' design…
❝ The coefficient of variation from previous studies is 20% & I am assuming the true test reference ratio to be between 0.95 and 1.05. I want to demonstrate bioequivalence (0.80-1.25) at 90% power at the 5% level.
I recommend the package
PowerTOST
for R (open source & free of costs). 
Your values
library(PowerTOST)
sampleN.TOST(CV=0.2, theta0=0.95, theta1=0.8, theta2=1.25,
targetpower=0.9, alpha=0.05, design="4x4")
+++++++++++ Equivalence test - TOST +++++++++++
Sample size estimation
-----------------------------------------------
Study design: 4x4 crossover
log-transformed data (multiplicative model)
alpha = 0.05, target power = 0.9
BE margins = 0.8 ... 1.25
True ratio = 0.95, CV = 0.2
Sample size (total)
n power
24 0.907302
n
ist the total sample size (hence, six per sequence).❝ […] if it was a standard AB/BA crossover, I estimate that I would require 12 individuals to complete each arm - is this correct? I am unsure how this calculation is extended to fit the 4x4 design - do I simply randomise 12 more individuals to each of the remaining two sequences?
Not quite so. In a 2×2 crossover we have n–2 degrees of freedom and in a 4×4 we have 3n–6. Sample size estimation is an iterative process (sample size is increased until at least the desired power is reached). In this process the degrees of freedom are important. Hence, multiplying the sample size for a 2×2 is not correct.
❝ Further, if I planned to have just 1 treatment dose changing the design as follows:
❝ ABC
❝ BCA
❝ CAB
❝ Is it reasonable to randomise 12 individuals per sequence?
No:
sampleN.TOST(CV=0.2, theta0=0.95, theta1=0.8, theta2=1.25,
targetpower=0.9, alpha=0.05, design="3x3")
+++++++++++ Equivalence test - TOST +++++++++++
Sample size estimation
-----------------------------------------------
Study design: 3x3 crossover
log-transformed data (multiplicative model)
alpha = 0.05, target power = 0.9
BE margins = 0.8 ... 1.25
True ratio = 0.95, CV = 0.2
Sample size (total)
n power
24 0.904606
Be aware that simultaneous comparisons inflate the Type I Error (the patient’s risk). I guess that in your first design you will not compare the two test treatments but only T1 vs. R1, T1 vs. R2, T2 vs. R1, and T2 vs. R2. With these k=4 comparisons (each performed at the nominal α 0.05) the Familywise (Type I) Error Rate will be 1–(1–α)k≤18.55%. Bonferroni’s adjusted α will be α/k or 0.0125 which translates into a 100(1–2α/k) or 97.5% two-sided confidence interval whilst keeping the FWER with 1–(1–α/k)k≤4.91% below the nominal α 0.05. The lower α will substantially increase the sample size: 24 → 36
sampleN.TOST(CV=0.2, theta0=0.95, theta1=0.8, theta2=1.25,
targetpower=0.9, alpha=0.05/4, design="4x4")
+++++++++++ Equivalence test - TOST +++++++++++
Sample size estimation
-----------------------------------------------
Study design: 4x4 crossover
log-transformed data (multiplicative model)
alpha = 0.0125, target power = 0.9
BE margins = 0.8 ... 1.25
True ratio = 0.95, CV = 0.2
Sample size (total)
n power
36 0.918242
sampleN.TOST(CV=0.2, theta0=0.95, theta1=0.8, theta2=1.25,
targetpower=0.9, alpha=0.05/2, design="3x3")
+++++++++++ Equivalence test - TOST +++++++++++
Sample size estimation
-----------------------------------------------
Study design: 3x3 crossover
log-transformed data (multiplicative model)
alpha = 0.025, target power = 0.9
BE margins = 0.8 ... 1.25
True ratio = 0.95, CV = 0.2
Sample size (total)
n power
30 0.909842
BTW, in your first design you opted for a Williams’ design
ABCD
BCDA
CDAB
DABC
ABCD
BCDA
CDAB
DABC
ABC
BCA
CAB
ABC
BCA
CAB
ACB
BAC
CBA
May I ask why?
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Sample size for 4-period 4-sequence crossover BE study Bryony Simmons 2018-02-01 12:16 [Power / Sample Size]
- function sampleN.TOST of package PowerTOSTHelmut 2018-02-01 13:01
- Alpha adjustment in higher order crossover d_labes 2018-02-01 14:01
- Deficiencies Helmut 2018-02-01 15:48
- Deficiencies nobody 2018-02-01 17:10
- Deficiencies d_labes 2018-02-01 18:57
- Deficiencies Relaxation 2018-02-02 11:12
- Deficiencies nobody 2018-02-02 12:49
- Deficiencies Helmut 2018-02-02 16:14
- Deficiencies Relaxation 2018-02-02 19:41
- alpha... where is omega? Astea 2018-02-02 21:45
- α and no ω Helmut 2018-02-02 23:39
- TIE for NTIDs d_labes 2018-02-04 12:40
- TIE for NTIDs Astea 2018-02-04 20:04
- TIE for NTIDs Helmut 2018-02-05 01:01
- TIE for NTIDs d_labes 2018-02-05 16:40
- TIE for NTIDs Helmut 2018-02-05 17:49
- TIE for NTIDs d_labes 2018-02-05 22:17
- TIE for NTIDs Helmut 2018-02-06 12:34
- TIE for NTIDs d_labes 2018-02-05 22:17
- TIE for NTIDs Helmut 2018-02-05 17:49
- TIE for NTIDs d_labes 2018-02-05 16:40
- TIE for NTIDs d_labes 2018-02-05 16:35
- bow TIE for NTIDs Astea 2018-02-05 17:52
- bow TIE for NTIDs Helmut 2018-02-05 18:10
- 111.11 for NTIDs Astea 2018-02-05 19:27
- 111.11 for NTIDs Helmut 2018-02-06 00:12
- 111.11 for NTIDs Astea 2018-02-05 19:27
- bow TIE for NTIDs d_labes 2018-02-05 22:33
- bow TIE for NTIDs Helmut 2018-02-05 18:10
- bow TIE for NTIDs Astea 2018-02-05 17:52
- TIE for NTIDs Helmut 2018-02-05 01:01
- TIE for NTIDs Astea 2018-02-04 20:04
- TIE for NTIDs d_labes 2018-02-04 12:40
- α and no ω Helmut 2018-02-02 23:39
- alpha... where is omega? Astea 2018-02-02 21:45
- Deficiencies Relaxation 2018-02-02 19:41
- Deficiencies Relaxation 2018-02-02 11:12
- Deficiencies Helmut 2018-02-01 15:48
- Alpha adjustment in higher order crossover d_labes 2018-02-01 14:01
- function sampleN.TOST of package PowerTOSTHelmut 2018-02-01 13:01