Dropouts in stage 2 [Two-Stage / GS Designs]

posted by Helmut Homepage – Vienna, Austria, 2017-09-12 03:41 (2767 d 05:36 ago) – Posting: # 17802
Views: 6,731

Hi ElMaestro,

❝ I am looking at my results now and trying to figure out if there is a story in this. So let me ask you experts: Let us say we look at e.g. CV=.3 and N1=12 (6 per sequence at stage 1). What would you expect in terms of power and type I error (i.e. any difference from table I in Potvin's work), if 2 subjects go lost in sequence RT during stage 2?


Both the type I error and power will be lower than with a complete stage 2. Hence, if we use a framework which controls the TIE and estimate the sample size of stage 2 with an appropriate algo (1 df less than usual due to the stage term) we should not be worried about the TIE – a smaller sample size translates into a lower chance to show BE and hence, also a lower TIE. Like in fixed sample designs the impact of dropouts on power will be small.

On the other hand, in TSDs it is not a clever idea to include more than the estimated n2 subjects (greedy CROs selling “additional subjects in order to compensate for potential loss in power due to dropouts” to sponsors). That’s a no-go because it might inflate the TIE. The literature on GSDs and adaptive methods is full of tricks adjusting the final α if the planned sample size was overrun. You don’t want to go there.

Not for an old salt like you but novices: If you think about modifying one of the validated frameworks it is mandatory to assess the operational characteristics (TIE, power) in simulations. Pocock’s α 0.0294 is not a natural constant. General rules: Futility criteria lower the TIE, whereas a minimum stage 2 sample size might lead to an inflated TIE.
Example: Molins et al.* modified Potvin’s methods by introducing a futility Nmax 150 and a minimum n2 of 1.5×n1. Their adjusted α was 0.0301 for ‘modified B’ and 0.0280 for ‘modified C’.



Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,418 posts in 4,926 threads, 1,668 registered users;
31 visitors (0 registered, 31 guests [including 12 identified bots]).
Forum time: 09:18 CEST (Europe/Vienna)

To know the history of science is to recognize the mortality
of any claim to universal truth.    Evelyn Fox Keller

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5