The n ext crackpot iteration [Two-Stage / GS Designs]
some remarks. More maybe tomorrow.
❝ The polynomial provides a fantastic approximation within our entire interval of interest.
Played around a little. Based on the AIC the 4th degree is the winner indeed.
❝ ##note: We might not want to write blah^3 etc if we optimize for speed, not sure.
Old wisdom. Here with my coefficients (total sample sizes [not N/seq], exact method for GRM 0.95, 80% power, CV 0.1–1.0).
library(microbenchmark)
a <- c(5.897943, -40.988390, 603.109578, -338.281351, 70.43138)
old.school <- function(a, CV) {
x <- a[1] + a[2]*CV + a[3]*CV*CV + a[4]*CV*CV*CV + a[5]*CV*CV*CV*CV
x + (2 - x %% 2)
}
lazy <- function(a, CV) {
x <- a[1] + a[2]*CV + a[3]*CV^2 + a[4]*CV^3 + a[5]*CV^4
x + (2 - x %% 2)
}
res <- microbenchmark(old.school(a, CV), lazy(a, CV), times=500L,
control=list("random", warmup=10))
boxplot(res, boxwex=0.25, las=1)
options(microbenchmark.unit="us")
print(res)
❝ ## perhaps ceil would be better?
I would round up to the next even (as above).
❝ You see, the sample size estimates are sort of almost perfect already. If you want to remove the very few 1's and -1's then just increase the polynomial degree above.
That doesn’t help. With
CV <- seq(0.1, 1, 0.01)
I got a match in 46/91 and +2 in 45/91. OK, conservative.Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Initial sample size guess for the Potvin methods ElMaestro 2017-08-19 15:04 [Two-Stage / GS Designs]
- Initial sample size guess for the Potvin methods Helmut 2017-08-19 16:06
- Initial sample size guess for the Potvin methods ElMaestro 2017-08-19 16:14
- Initial sample size guess for the Potvin methods Helmut 2017-08-19 17:12
- Initial sample size guess for the Potvin methods ElMaestro 2017-08-19 17:17
- Confuse-a-Cat Helmut 2017-08-19 17:33
- Confuse-a-Cat ElMaestro 2017-08-19 17:56
- Confuse-a-Cat Helmut 2017-08-19 17:33
- Initial sample size guess for the Potvin methods ElMaestro 2017-08-19 17:17
- loop ↔ vectorized ↔ direct Helmut 2017-08-20 14:40
- loop ↔ vectorized ↔ direct ElMaestro 2017-08-20 15:22
- loop ↔ vectorized ↔ direct Helmut 2017-08-20 16:23
- loop ↔ vectorized ↔ direct ElMaestro 2017-08-20 17:22
- loop ↔ vectorized ↔ direct Helmut 2017-08-20 16:23
- loop ↔ vectorized ↔ direct ElMaestro 2017-08-20 15:22
- Initial sample size guess for the Potvin methods Helmut 2017-08-19 17:12
- Initial sample size guess for the Potvin methods ElMaestro 2017-08-19 16:14
- The n ext crackpot iteration ElMaestro 2017-08-19 20:04
- The n ext crackpot iterationHelmut 2017-08-20 02:20
- The ultimate crackpot iteration! ElMaestro 2017-08-20 14:35
- The ultimate crackpot iteration! Helmut 2017-08-20 15:11
- The ultimate crackpot iteration! ElMaestro 2017-08-20 15:28
- The ultimate crackpot iteration! Helmut 2017-08-20 16:06
- The ultimate crackpot iteration! ElMaestro 2017-08-20 16:15
- The ultimate crackpot iteration! Helmut 2017-08-20 18:58
- The ultimate crackpot iteration! ElMaestro 2017-08-20 19:32
- Suggested code ElMaestro 2017-08-21 18:13
- Nitpicker! Helmut 2017-08-22 13:33
- Nitpicker! ElMaestro 2017-08-22 17:27
- Nitpicker! Helmut 2017-08-22 17:49
- Nitpicker! ElMaestro 2017-08-22 17:59
- Nitpicker! Helmut 2017-08-22 19:15
- Benchmark code ElMaestro 2017-08-22 22:29
- Benchmark code Helmut 2017-08-23 01:48
- Benchmark code ElMaestro 2017-08-22 22:29
- Nitpicker! Helmut 2017-08-22 19:15
- Nitpicker! ElMaestro 2017-08-22 17:59
- Nitpicker! Helmut 2017-08-22 17:49
- Nitpicker! ElMaestro 2017-08-22 17:27
- Nitpicker! Helmut 2017-08-22 13:33
- Suggested code ElMaestro 2017-08-21 18:13
- The ultimate crackpot iteration! ElMaestro 2017-08-20 19:32
- The ultimate crackpot iteration! Helmut 2017-08-20 18:58
- The ultimate crackpot iteration! ElMaestro 2017-08-20 16:15
- The ultimate crackpot iteration! Helmut 2017-08-20 16:06
- The ultimate crackpot iteration! ElMaestro 2017-08-20 15:28
- The ultimate crackpot iteration! Helmut 2017-08-20 15:11
- Initial sample size guess for the Potvin methods Helmut 2017-08-19 16:06