PK metric with largest variability – generally – drives the sample size [Power / Sample Size]

posted by Helmut Homepage – Vienna, Austria, 2017-05-22 17:16 (2861 d 23:38 ago) – Posting: # 17388
Views: 5,234

Salam Mahmoud,

❝ Please, advise on sample size estimation and setting of BE limits in the following situations where ISV for Cmax and AUC are far apart.


You have to demonstrate BE for both. Since in your example Cmax seems to be highly variable I assumed a T/R-ratio of 0.9 (and not the observed despite that it is close to 1) and the same for AUC. Target power 80%.
Two options for the EMA:
  1. Reference-scaling acceptable (widening of the limits for Cmax clinically justifiable), RTRT|TRTR design.

        Design method metric   GMR    CV     LL     UL  n  power  GMRlo
     RTRT|TRTR   ABEL   Cmax 0.900 0.336 0.7799 1.2822 34 0.8040   <NA>
     RTRT|TRTR    ABE    AUC 0.900 0.202 0.8000 1.2500 34 0.9613 0.8717

    Regulator: EMA (ABEL applicable if CVwR of Cmax >0.3).
    PK metric ruling the sample size: Cmax
    Sample size: 34 (ABEL, power: 0.8040)
    Power of AUC (ABE): 0.9613
    Lowest GMR of AUC which will give power 0.8: 0.8717
    Total number of treatments in study: 136


  2. Reference-scaling not acceptable (conventional ABE)

    1. RTRT|TRTR design.

          Design method metric   GMR    CV     LL     UL  n  power  GMRlo
       RTRT|TRTR    ABE   Cmax 0.900 0.336 0.8000 1.2500 50 0.8132   <NA>
       RTRT|TRTR    ABE    AUC 0.900 0.202 0.8000 1.2500 50 0.9938 0.8586

      PK metric ruling the sample size: Cmax
      Sample size: 50 (ABE, power: 0.8132)
      Power of AUC (ABE): 0.9938
      Lowest GMR of AUC which will give power 0.8: 0.8586
      Total number of treatments in study: 200


    2. TR|TR design.

      Design method metric   GMR    CV     LL     UL  n  power  GMRlo
        RT|TR    ABE   Cmax 0.900 0.336 0.8000 1.2500 98 0.8046   <NA>
        RT|TR    ABE    AUC 0.900 0.202 0.8000 1.2500 98 0.9928 0.8593

      PK metric ruling the sample size: Cmax
      Sample size: 98 (ABE, power: 0.8046)
      Power of AUC (ABE): 0.9928
      Lowest GMR of AUC which will give power 0.8: 0.8593
      Total number of treatments in study: 196

For the FDA you could try reference-scaling (no justification needed, applicability depends on swR). RTRT|TRTR design.

    Design method metric   GMR    CV     LL     UL  n  power  GMRlo
 RTRT|TRTR  RSABE   Cmax 0.900 0.336 0.7468 1.3390 28 0.8064   <NA>
 RTRT|TRTR  RSABE    AUC 0.900 0.202 0.8000 1.2500 28 0.9168 0.8984

Regulator: FDA (RSABE applicable to PK metrics with CVwR ≥0.3).
PK metric ruling the sample size: Cmax
Sample size: 28 (RSABE, power: 0.8064)
Power of AUC (RSABE): 0.9168
Lowest GMR of AUC which will give power 0.8: 0.8810
Total number of treatments in study: 112

For ABE the outcome is the same as for the EMA’s 2.a and 2.b. above.

You can see that the variability of Cmax (even for reference-scaling) drives the sample size. However, you get an incentive. Power for AUC will be (much) higher than the target. Hence, its T/R-ratio can deviate more from 1 than expected (as shown above in the column GMRlo) or its CV can be higher whilst still maintaining the target level.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,409 posts in 4,921 threads, 1,669 registered users;
11 visitors (0 registered, 11 guests [including 3 identified bots]).
Forum time: 15:55 CET (Europe/Vienna)

An expert is one who knows more and more
about less and less.    Nicholas Murray Butler

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5