Danish ultra-conservatism [Power / Sample Size]
» Side effect 2:
» The Danish are ultra-conservative!
Confirmed. Try this one:
library(PowerTOST)
dk <- function(CV, n, lower, upper, theta0) { # Danish power
p0 <- power.TOST(CV=CV, n=n, theta0=theta0,
theta1=lower, theta2=upper)
p1 <- power.TOST(CV=CV, n=n, theta0=theta0,
theta1=lower, theta2=1)
p2 <- power.TOST(CV=CV, n=n, theta0=theta0,
theta1=1, theta2=upper)
p0-p1-p2
}
of <- function(x) { # objective function
(dk(CV=CV, n=n, lower=lower, upper=upper, theta0=x)-target)^2
}
lower <- 0.9 # NTID-range
upper <- 1/lower
CV <- 0.1
target <- 0.8
theta0 <- 0.9
n <- 22 # fixed
theta0.dk <- optimize(of, interval=c(lower, 1), tol=1e-12)$minimum
power <- dk(CV=CV, n=n, lower=lower, upper=upper, theta0=theta0.dk)
pwr.1 <- dk(CV=CV, n=n, lower=lower, upper=upper, theta0=theta0)
GMR <- seq(lower, upper, length.out=101)
pwr <- vector()
for (j in seq_along(GMR)) {
pwr[j] <- dk(CV=CV, n=n, lower=lower, upper=upper, theta0=GMR[j])
}
plot(GMR, pwr, log="x", ylim=c(0, 1), type="l", lwd=2, col="blue",
las=1, ylab="power with a Danish twist", cex.main=1,
main=paste0("theta0 = ", theta0, " (n = ", n, ")"))
grid()
abline(h=target)
abline(v=c(theta0, 1/theta0), lty=3, col="red")
abline(v=c(theta0.dk, 1/theta0.dk), lty=2, col="blue")
arrows(theta0, 0, theta0.dk, 0, length=0.1, angle=25,
code=2, lwd=2, col="red")
arrows(1/theta0, 0, 1/theta0.dk, 0, length=0.1, angle=25,
code=2, lwd=2, col="red")
BE <- sprintf("%s %.4f%s%.4f", "BE-limits:", lower, "\u2026", upper)
pwr <- sprintf("%s %.4g", "Power (theta0):", pwr.1)
op <- par(no.readonly=TRUE)
par(family="mono")
if (round(power, 6) >= target) {
legend("topright", bg="white", cex=0.9, x.intersp=0,
legend=c(BE, sprintf("%s %.4f%s%.4f",
"GMR-range:", theta0.dk, "\u2026", 1/theta0.dk),
pwr))
} else {
legend("topright", bg="white", cex=0.9, x.intersp=0,
legend=c(BE, sprintf("%s %.4f", "Achievable power:", power), pwr))
}
par(op)
It is courageous to assume theta0 0.9 for a NTID (
sampleN.TOST()
would tell you to get lost). If you believe in 0.95, n would be 44. To get 80% power the GMR-range is 0.9834…1.0169. Power for 0.95 is only 0.2333. Would it be ethical to perform the study?»
Something wrong with the forum? It kicks me out nearly all the time.
You are not alone.

Dif-tor heh smusma 🖖
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Denmark Curiosa (1 in 90% CI in 0.8-1.25) zizou 2017-02-05 02:03 [Power / Sample Size]
- Kudos! Helmut 2017-02-05 19:16
- Kudos! ElMaestro 2017-02-05 21:15
- Joking! Helmut 2017-02-06 13:27
- Thanks, and DKMA ElMaestro 2017-02-06 13:46
- Power with a Danish twist Helmut 2017-02-07 15:23
- Danish ultra-conservatism d_labes 2017-02-08 10:57
- Danish ultra-conservatismHelmut 2017-02-08 11:47
- Danish ultra-conservatism d_labes 2017-02-08 10:57
- Power with a Danish twist Helmut 2017-02-07 15:23
- Thanks, and DKMA ElMaestro 2017-02-06 13:46
- Kudos to ElMaestro! d_labes 2017-02-06 15:06
- Plausible Helmut 2017-02-06 17:16
- Plausible to me too d_labes 2017-02-06 20:25
- Plausible to me too ElMaestro 2017-02-06 22:30
- Plausible to me too zizou 2017-02-06 22:42
- THX d_labes 2017-02-07 10:01
- Plausible to me too d_labes 2017-02-06 20:25
- Plausible Helmut 2017-02-06 17:16
- Joking! Helmut 2017-02-06 13:27
- Kudos! ElMaestro 2017-02-05 21:15
- 3D Helmut 2017-02-06 13:47
- Denmark Curiosa (1 in 90% CI in 0.8-1.25) d_labes 2017-02-06 14:54
- Denmark Curiosa (1 in 90% CI in 0.8-1.25) zizou 2017-02-08 21:03
- Alternative CI for BE decision d_labes 2017-02-09 11:18
- Alternative CI for BE decision ElMaestro 2017-02-09 11:36
- Alternative CI for BE decision d_labes 2017-02-09 11:48
- How decidedly odd ElMaestro 2017-02-09 13:28
- How decidedly odd zizou 2017-02-09 14:42
- How decidedly odd ElMaestro 2017-02-09 13:28
- Alternative CI for BE decision Helmut 2017-02-09 13:41
- No alternative d_labes 2017-02-09 20:37
- No alternative ElMaestro 2017-02-10 13:51
- No alternative? mittyri 2017-02-10 15:28
- Dinamarka? d_labes 2017-02-10 20:10
- OT: Czech beer d_labes 2017-02-10 19:57
- No alternative? mittyri 2017-02-10 15:28
- No alternative ElMaestro 2017-02-10 13:51
- No alternative d_labes 2017-02-09 20:37
- Alternative CI for BE decision d_labes 2017-02-09 11:48
- Alternative CI for BE decision ElMaestro 2017-02-09 11:36
- Alternative CI for BE decision d_labes 2017-02-09 11:18
- Denmark Curiosa (1 in 90% CI in 0.8-1.25) zizou 2017-02-08 21:03
- Denmark Curiosa (1 in 90% CI in 0.8-1.25): Gone Helmut 2019-11-08 12:47
- Kudos! Helmut 2017-02-05 19:16