Validation of PowerTOST [Two-Stage / GS Designs]

posted by Helmut Homepage – Vienna, Austria, 2013-10-09 16:10 (4274 d 16:37 ago) – Posting: # 11632
Views: 20,024

Hi Karthik,

❝ In PowerTOST actually what formula they used and how to validate PowerTOST from my end.

❝ According to my SOP I want to mention the formula so if possible pls share to me.


Hint:
library(PowerTOST)
help(PowerTOST)


Scroll down to the general references. For the “exact” method see help(OwensQ). Background and formulas in
{R-folder}/library/PowerTOST/doc/BE_power_sample_size_excerpt.pdf.
For validation of sampleN.TOST() see help(data2x2) and the script test_2x2.R in the /tests-folder. This may serve as an indirect validation of power.TOST() – which is repeatedly called within sampleN.TOST() until the target power is reached.
You can also use the two example data sets of Potvin et al., though you have to use method='shifted' in power.TOST() – since they used the shifted central t-distribution in their simulations for speed reasons.

library(PowerTOST)
n  <- 12
m  <- 'shifted'
a0 <- 0.05
a1 <- 0.0294


Example 1, stage 1
Method B
                                                            power  Ntotal
Potvin                                                       75.6    14
round(100*power.TOST(alpha=a1, CV=0.1456, n=n, method=m),1)  75.6
sampleN.TOST(alpha=a1, CV=0.1456, method=m)                          14


Method C
                                                            power  Ntotal
Potvin                                                       84.1    NA
round(100*power.TOST(alpha=a0, CV=0.1456, n=n, method=m),1)  84.1


Example 2, stage 1
Method B
                                                            power  Ntotal
Potvin                                                       50.5    20
round(100*power.TOST(alpha=a1, CV=0.1821, n=n, method=m),1)  50.5


Method C
                                                            power  Ntotal
Potvin                                                       64.9    20
round(100*power.TOST(alpha=a0, CV=0.1821, n=n, method=m),1)  65.0


both methods
                                                                   Ntotal
sampleN.TOST(alpha=a1, CV=0.1821, method=m)                          20


a posteriori power of the pooled data set, both methods
                                                            power
Potvin                                                       66.3
round(100*power.TOST(alpha=a1, CV=0.2167, n=20, method=m),1) 66.7


Again: Don’t use Phoenix/WinNonlin, which reports after stage 1 for Method B (0.0294) power 93.4% (example 1) and 80.4% (example 2)…

If you want to cross-validate PowerTOST() against commercial software (e.g., NQuery Advisor or PASS) use method='shifted' for the latter because it employs the shifted central t-distribution instead of the exact method.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,673 registered users;
29 visitors (0 registered, 29 guests [including 19 identified bots]).
Forum time: 08:47 CEST (Europe/Vienna)

Reach for the stars,
even if you have to stand on a cactus.    Susan Longacre

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5