regulators don’t care? [RSABE / ABEL]
❝ totally agree: If the inflation of the type-I-error is real = serious risk to public health (to quote a famous colleague of mine).
Is this the same guy who is (in)famous for publicly calling some approaches “bullshit”?
BTW, α-inflation is not unknown. See the figures and table 1 of the two Lászlós.1
❝ PS.: IMHO - a-priori specification of the method should control the type-I-error (i.e. CV from historical data or more stringent the corresponding lower confidence limit should be greater than 30% to allow scaling).
I would also say so. Already noted in the past:
Besides, it is not clear at present what kind of regulatory policy will be followed when several σWR estimates (i.e. results of previous submissions) are available to a drug regulatory agency. If regulators use all available data, then they can get an improved estimate for σWR, and possibly can draw a different conclusion from the sponsor.2
But likely it is wishful thinking to expect a list of acceptance ranges or CVs of reference formulations.
- Endrényi L, Tóthfalusi L. Regulatory Conditions for the Determination of Bioequivalence of Highly Variable Drugs. J Pharm Pharmaceut Sci. 2009;12(1):138–49. free online
- Tóthfalusi L, Endrényi L, García Arieta A. Evaluation of Bioequivalence for Highly Variable Drugs with Scaled Average Bioequivalence. Clin Pharmacokinet. 2009;48(11):725–43. doi:10.2165/11318040-000000000-00000
Edit: EMA’s data set I (full replicate, n1 36, n2 37, CVWR 0.4696) needs no α-adjustment, pBE 0.012061. If the two outliers are excluded (n1 34, n2 37, CVWR 0.3216) we require an adjusted α of 0.03149 in order to maintain the consumer’s risk. The 93.70% CIs of 106.03–126.16% (Method A) and 106.10–126.24% (Method B) lie still within the scaled acceptance range of 78.79–126.93%, but it is a close shave…
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- ‘alpha’ of scaled ABE? d_labes 2013-03-15 15:56 [RSABE / ABEL]
- ‘alpha’ of scaled ABE? Helmut 2013-03-15 17:27
- ’alpha’ of scaled ABE: design d_labes 2013-03-16 20:10
- N=24, 48 d_labes 2013-03-18 08:11
- adaptive design without adjustment martin 2013-03-25 20:47
- α adjustment? Helmut 2013-03-26 15:21
- iteratively adjusted alpha martin 2013-03-26 16:19
- throw away our sample size tables? Helmut 2013-03-26 18:02
- if real martin 2013-03-26 19:44
- regulators don’t care?Helmut 2013-03-26 21:18
- adjusting α Helmut 2013-08-11 16:19
- missing letter apapanas 2024-10-31 06:02
- PowerTOST: sampleN.scABEL.ad() Helmut 2024-10-31 08:41
- PowerTOST: sampleN.scABEL.ad() apapanas 2024-11-08 10:48
- Molins et al. (2017) Helmut 2024-11-08 14:34
- PowerTOST: sampleN.scABEL.ad() apapanas 2024-11-08 10:48
- PowerTOST: sampleN.scABEL.ad() Helmut 2024-10-31 08:41
- missing letter apapanas 2024-10-31 06:02
- if real martin 2013-03-26 19:44
- target α in sim’s? Helmut 2013-03-27 15:38
- target α in sim’s? martin 2013-03-27 16:36
- If it is real: results Helmut 2013-03-28 23:20
- having alpha martin 2013-03-28 15:08
- fixed swr Helmut 2013-03-28 23:34
- fixed swr martin 2013-03-29 15:07
- Yes but no but yes but no but… Helmut 2013-03-29 16:10
- fixed swr martin 2013-03-29 15:07
- fixed swr Helmut 2013-03-28 23:34
- target α in sim’s? martin 2013-03-27 16:36
- throw away our sample size tables? Helmut 2013-03-26 18:02
- iteratively adjusted alpha martin 2013-03-26 16:19
- α adjustment? Helmut 2013-03-26 15:21
- adaptive design without adjustment martin 2013-03-25 20:47
- N=24, 48 d_labes 2013-03-18 08:11
- ’alpha’ of scaled ABE: design d_labes 2013-03-16 20:10
- ‘alpha’ of scaled ABE? Helmut 2013-03-15 17:27