EMA: adjusted α [RSABE / ABEL]
for the ones who are concerned about inflation of the Type I Error with EMA’s ABEL (see this thread) and don’t want to risk my iteratively adjusted α. There I suspected that adjusting to ~0.025 for full replicate designs and ~0.03 for the partial replicate would maintain the TIE at ≤0.05.
I explored CV 30% (maximum inflation of the TIE) and 50% (minimum). Here are the results (T/R 0.90, sample sizes for 80 and 90% power); R-code at the end for the nerds.
Design CV LL UL alpha target n power TIE Infl
RTRT|TRTR 0.30 0.8000 1.2500 0.0500 0.80 34 0.8028 0.08128 *
RTRT|TRTR 0.30 0.8000 1.2500 0.0250 0.80 44 0.8040 0.04488
RTRT|TRTR 0.30 0.8000 1.2500 0.0500 0.90 48 0.9002 0.08226 *
RTRT|TRTR 0.30 0.8000 1.2500 0.0250 0.90 60 0.9021 0.04552
RTRT|TRTR 0.50 0.6984 1.4319 0.0500 0.80 28 0.8143 0.03301
RTRT|TRTR 0.50 0.6984 1.4319 0.0250 0.80 34 0.8088 0.01603
RTRT|TRTR 0.50 0.6984 1.4319 0.0500 0.90 38 0.9065 0.02928
RTRT|TRTR 0.50 0.6984 1.4319 0.0250 0.90 44 0.9021 0.01615
RTR|TRT 0.30 0.8000 1.2500 0.0500 0.80 50 0.8016 0.08746 *
RTR|TRT 0.30 0.8000 1.2500 0.0250 0.80 66 0.8091 0.04942
RTR|TRT 0.30 0.8000 1.2500 0.0500 0.90 72 0.9027 0.08861 *
RTR|TRT 0.30 0.8000 1.2500 0.0250 0.90 90 0.9048 0.05050 *
RTR|TRT 0.50 0.6984 1.4319 0.0500 0.80 42 0.8035 0.03170
RTR|TRT 0.50 0.6984 1.4319 0.0250 0.80 52 0.8061 0.01534
RTR|TRT 0.50 0.6984 1.4319 0.0500 0.90 58 0.9022 0.02769
RTR|TRT 0.50 0.6984 1.4319 0.0250 0.90 68 0.9020 0.01525
RRT|RTR|TRR 0.30 0.8000 1.2500 0.0500 0.80 54 0.8159 0.07155 *
RRT|RTR|TRR 0.30 0.8000 1.2500 0.0304 0.80 63 0.8061 0.04533
RRT|RTR|TRR 0.30 0.8000 1.2500 0.0500 0.90 75 0.9088 0.07243 *
RRT|RTR|TRR 0.30 0.8000 1.2500 0.0304 0.90 87 0.9068 0.04598
RRT|RTR|TRR 0.50 0.6984 1.4319 0.0500 0.80 39 0.8076 0.03390
RRT|RTR|TRR 0.50 0.6984 1.4319 0.0304 0.80 48 0.8261 0.01998
RRT|RTR|TRR 0.50 0.6984 1.4319 0.0500 0.90 54 0.9097 0.03305
RRT|RTR|TRR 0.50 0.6984 1.4319 0.0304 0.90 60 0.9024 0.02028
Seems to work. Of course the adjustment is more conservative than necessary for all CVs above ~0.4…
I wouldn’t worry too much about the slight inflation of the TIE in RTR|TRT. Ten runs with different seeds:
0.05050 *
0.05032
0.05027
0.05052 *
0.05059 *
0.05066 *
0.05025
0.05016
0.05044 *
0.05054 *
library(PowerTOST)
theta0 <- 0.90
CV <- c(0.3, 0.5)
target <- c(0.8, 0.9)
design <- c("2x2x4", "2x2x3", "2x3x3") # PowerTOST
type <- c("RTRT|TRTR", "RTR|TRT", "RRT|RTR|TRR") # clear words
sig <- binom.test(x=0.05*1e6, n=1e6, alternative="less",
conf.level=1-0.05)$conf.int[2]
res <- matrix(nrow=24, ncol=10, byrow=TRUE, dimnames=list(NULL,
c("Design", "CV", "LL", "UL", "alpha", "target", "n",
"power", "TIE", "Infl")))
i <- 0
for (j in seq_along(design)) {
for (k in seq_along(CV)) {
LL <- min(0.80, exp(-0.76*CV2se(CV[k]))) # EMA's ABEL
UL <- 1/LL
for (l in seq_along(target)) {
for (m in 1:2) {
i <- i + 1
res[i, 1] <- type[match(design[j], design)]
res[i, 2] <- sprintf("%.2f", CV[k])
res[i, 3] <- sprintf("%.4f", LL)
res[i, 4] <- sprintf("%.4f", UL)
if (m == 1) {
alpha <- 0.05 # unadjusted (GL)
} else {
if (design[j] == "2x3x3") {
alpha <- 0.0304 # partial replicate
} else {
alpha <- 0.0250 # full replicates
}
}
res[i, 5] <- sprintf("%.4f", alpha)
res[i, 6] <- sprintf("%.2f", target[l])
tmp <- sampleN.scABEL(alpha=alpha, CV=CV[k],
theta0=theta0, targetpower=target[l],
des=design[j], nsims=1e5, print=F, details=F)
res[i, 7] <- tmp[, "Sample size"]
res[i, 8] <- sprintf("%.4f", tmp[, "Achieved power"])
TIE <- power.scABEL(alpha=alpha, theta0=LL, CV=CV[k],
n=tmp[, "Sample size"], des=design[j], nsims=1e6)
res[i, 9] <- sprintf("%.5f", TIE)
res[i, 10] <- ""
if (TIE > sig) res[i, 10] <- "*"
}
}
}
}
print(as.data.frame(res), row.names=FALSE)
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- EMA: adjusted αHelmut 2015-11-18 00:27 [RSABE / ABEL]
- EMA: adjusted α for scABEL (for no-nerds) d_labes 2015-11-18 08:25
- In praise of PowerTOST Helmut 2015-11-18 16:01
- iteratively adjusted α Helmut 2015-11-28 22:35
- iteratively adjusted α - FDA d_labes 2015-12-08 09:35
- EMA: adjusted α for scABEL (for no-nerds) d_labes 2015-11-18 08:25