AB661
☆    

India,
2024-07-13 11:02
(63 d 12:45 ago)

Posting: # 24072
Views: 1,482
 

 Oxcarbazepine Tablet Study design [Design Issues]

Dear All,

Query is with reference to Oxcarbazepine Tablet BE study Submission to Health Canada.

As per literature Oxcarbazepine is highly variable with respect to Cmax and ISCV is more than 30%. As per Health Canada “A drug product may be considered a HVDP [highly variable drug product] if the within-subject coefficient of variation (CV) of the AUC [area under the concentration versus time curve] for the reference product is greater than 30.0%.” As per Health Canada Oxcarbazepine is not highly variable. BE study need to be performed with two-way cross over design without expanding confidence interval. In Pilot two way cross over study (N:14) there is very high variability with respect to Cmax parameter for both test & reference product (T/R ratio: 111, ISCV: 43%). Due to which unable decide sample size for Pivotal BE study. To counter high variability in Pilot two-way crossover BE study i have following proposal.

- Pilot BE Study with full replicate design. Calculate sample size for pivotal two way Cross over study design based on this study.

Can you let us know your feedback on this proposal?


With regards
AB661


Edit: Category changed; see also this post #1[Helmut]
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2024-07-14 14:17
(62 d 09:30 ago)

@ AB661
Posting: # 24073
Views: 1,261
 

 ABE or ABEL for Health Canada

Hi AB661,

❝ - Pilot BE Study with full replicate design. Calculate sample size for pivotal two way Cross over study design based on this study.

It’s always better to perform a pilot study than to trust in data from the literature. Even more, the sample size you mentioned is pretty small and hence, the estimates (T/R-ratio, CV) are unreliable. Note that any replicate design can be assessed for conventional (unscaled) ABE as well. I would state in the protocol that you aim at reference-scaling by ABEL for AUC. If CVwR ≤ 30%, the study will be assessed by ABE (90% CI within 80.0 – 125.0%). Cmax is not relevant in the sample size estimation because only the point estimate has to lie within 80.0 – 125.0%. An [image]-script for 2×2×2 and 4-period full replicate designs at the end.

Examples:
  • Say, the CV of AUC is 30% and thus, you must not scale.
    previous data
     metric design theta0   CV  N
       Cmax  2x2x2   1.11 0.43 14
        AUC  2x2x2   1.11 0.30 14
    planned pivotal studies
     metric design method theta0   CV     L     U  n     power
       Cmax  2x2x2     PE   1.11 0.43 0.800 1.250 20 0.8131388
       Cmax  2x2x4     PE   1.11 0.43 0.800 1.250 10 0.8131388
        AUC  2x2x2    ABE   1.11 0.30 0.800 1.250 78 0.8049580
        AUC  2x2x4    ABE   1.11 0.30 0.800 1.250 40 0.8157494

  • If it is 33%, ABEL is acceptable – of course only if the study is performed in a replicate design.
    previous data
     metric design theta0   CV  N
       Cmax  2x2x2   1.11 0.43 14
        AUC  2x2x2   1.11 0.33 14
    planned pivotal studies
     metric design method theta0   CV     L     U  n     power
       Cmax  2x2x2     PE   1.11 0.43 0.800 1.250 20 0.8131388
       Cmax  2x2x4     PE   1.11 0.43 0.800 1.250 10 0.8131388
        AUC  2x2x2    ABE   1.11 0.33 0.800 1.250 92 0.8001078
        AUC  2x2x4   ABEL   1.11 0.33 0.783 1.277 36 0.8096300


library(PowerTOST)            # see https://cran.r-project.org/package=PowerTOST
# data of a previous study; will also be used in planning pivotal ones
prev   <- data.frame(metric = c("Cmax", "AUC"), design = "2x2x2",
                     theta0 = c(1.11, 1.11), CV = c(0.43, 0.30), N = c(14, 14))
design <- c("2x2x2", "2x2x4") # 2×2×2 and 4-period full replicates (TRTR|RTRT, TRRT|RTTR, TTRR|RRTT)
                              # "2x2x3" for 3-period full replicates (TRT|RTR, TTR|RRT)
                              # "2x3x3" for partial replicate (TRR|RTR|RRT)
target <- 0.8                 # target (desired) power
# planned pivotal studies
piv1   <- cbind(metric = prev[, 1], design = design[1], method = "ABE",
                prev[, 3:4], L = 0.8, U = 1.25, n = NA_integer_, power = NA_real_)
piv2   <- cbind(metric = prev[, 1], design = design[2], piv1[, 3:9])
for (j in 1:nrow(prev)) {
  if (prev$metric[j] == "Cmax") {
    # alpha = 0.5 means that only the T/R-ratio has
    # to lie within 80–125% (without observing its CI)

    for (k in seq_along(design)) {
      tmp <- sampleN.TOST(alpha = 0.5, CV = prev$CV[j], theta0 = prev$theta0[j],
                          design = design[k], targetpower = target, print = FALSE)
      ifelse (k == 1, piv1[j, 8:9] <- tmp[7:8], piv2[j, 8:9] <- tmp[7:8])
    }
  } else {
    # ABE, 90% CI of the T/R-ratio within 80–125%
    for (k in seq_along(design)) {
      tmp <- sampleN.TOST(CV = prev$CV[j], theta0 = prev$theta0[j],
                          design = design[k], targetpower = target, print = FALSE)
      ifelse (k == 1, piv1[j, 8:9] <- tmp[7:8], piv2[j, 8:9] <- tmp[7:8])
    }
    if (prev$CV[j] > 0.3) {
      # ABEL, 90% CI of the T/R-ratio within expanded limits {L, U}; for Health
      # Canada intra-subject contrasts are used (instead of an ANOVA)

      tmp          <- sampleN.scABEL(CV = prev$CV[j], theta0 = prev$theta0[j],
                                     design = piv2$design[j], targetpower = target,
                                     regulator = "HC", print = FALSE, details = FALSE)
      piv2[j, 3]   <- "ABEL"
      piv2[j, 6:7] <- scABEL(CV = prev$CV[j], regulator = "HC") # L and U
      piv2[j, 8:9] <- tmp[8:9]
    }
  }
}
pivotals   <- rbind(piv1, piv2)
pivotals   <- pivotals[order(pivotals$metric, pivotals$design, method = "radix",
                             decreasing = c(TRUE, FALSE)), ] # cosmetics
pivotals$L <- sprintf("%.3f", pivotals$L)
pivotals$U <- sprintf("%.3f", pivotals$U)
pivotals$method[pivotals$metric =="Cmax"] <- "PE"
t1         <- "previous data\n"; t2 <- "planned pivotal studies\n"
cat(t1); print(prev, row.names = FALSE); cat(t2); print(pivotals, row.names = FALSE)


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
jag009
★★★

NJ,
2024-07-23 21:50
(53 d 01:57 ago)

@ AB661
Posting: # 24094
Views: 947
 

 Oxcarbazepine Tablet Study design

Hi,

What is your CV for AUC? Like Helmut wrote, Canada requires T/R ratio for Cmax, not 90% CI. Therefore you just need to design and power your study based on CV for AUC.
J
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2024-07-24 11:06
(52 d 12:41 ago)

@ jag009
Posting: # 24096
Views: 920
 

 Health Canada ABEL

Hi John,

❝ What is your CV for AUC? Like Helmut wrote, Canada requires T/R ratio for Cmax, not 90% CI. Therefore you just need to design and power your study based on CV for AUC.

Depends. A more flexible [image]-script is given there. In most cases (esp. if both are highly variable) one even gains power for Cmax.

 design metric method   CV  T/R  n   power
  2x2x4   Cmax     PE 0.43 0.90 12 0.83619
  2x2x4    AUC ABE(L) 0.29 0.95 18 0.81479
Sample size is driven by AUC.
With a sample size of 18 power for Cmax = 0.88712.


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
AB661
☆    

India,
2024-08-24 13:00
(21 d 10:47 ago)

@ jag009
Posting: # 24158
Views: 387
 

 Oxcarbazepine Tablet Study design

❝ What is your CV for AUC? Like Helmut wrote, Canada requires T/R ratio for Cmax, not 90% CI. Therefore you just need to design and power your study based on CV for AUC.


Dear Sir,

CV for AUC is 15 %.


Edit: Full quote removed. Please delete everything from the text of the original poster which is not necessary in understanding your answer; see also this post #5[Helmut]
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2024-08-24 14:19
(21 d 09:28 ago)

@ AB661
Posting: # 24159
Views: 389
 

 Oxcarbazepine Tablet Study design

Hi AB661,

❝ ❝ What is your CV for AUC? Like Helmut wrote, Canada requires T/R ratio for Cmax, not 90% CI. Therefore you just need to design and power your study based on CV for AUC.


❝ CV for AUC is 15 %.


Why didn’t you use the [image]-script suggested above yourself? It gives (for a target power of at least 90%):

 design metric method   CV  T/R  n   power
  2x2x4   Cmax     PE 0.43 0.90 22 0.90999
  2x2x4    AUC ABE(L) 0.11 0.95 12 0.99972
Sample size is driven by Cmax.
With a sample size of 22 power for AUC = 1.00000.

Since the CVs of Cmax and AUC are extremely different, this is one of the – rare – cases where the sample size depends on the variability of Cmax. You will achieve a very high power for AUC.


P.S: Why have you been waiting for six weeks to provide complete information?

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
UA Flag
Activity
 Admin contact
23,225 posts in 4,879 threads, 1,652 registered users;
35 visitors (0 registered, 35 guests [including 9 identified bots]).
Forum time: 23:47 CEST (Europe/Vienna)

We absolutely must leave room for doubt
or there is no progress and no learning.
There is no learning without having to pose a question.
And a question requires doubt.
People search for certainty.
But there is no certainty.    Richard Feynman

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5