Imph
★    

Algeria,
2024-01-29 20:24
(34 d 05:49 ago)

Posting: # 23847
Views: 629
 

 power post hoc [🇷 for BE/BA]

Hi everyone,

To calculate the power post hoc using the R software via the "PowerTOST" package, what are the observed parameters to use? observed CV, Point estimate (T/R), the real number of subject. Is that correct?

Best regards
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2024-01-29 21:09
(34 d 05:04 ago)

@ Imph
Posting: # 23848
Views: 574
 

 post hoc power

Hi Imph,

❝ To calculate the power post hoc […], what are the observed parameters to use? observed CV, Point estimate (T/R), the real number of subject. Is that correct?


Yes it is. But please read this article for details why you should not do it.

Quoting the WHO*

The a posteriori power of the study does not need to be calculated. The power of interest is that calculated before the study is con­ducted to ensure that the adequate sample size has been selected. […] The relevant power is the power to show equivalence within the pre-defined acceptance range.
(my emphasis)



  • WHO. Frequent deficiencies in BE study protocols. Geneva. November 2020. Online.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Imph
★    

Algeria,
2024-01-30 10:16
(33 d 15:57 ago)

@ Helmut
Posting: # 23849
Views: 506
 

 post hoc power

Hi

Thank you for the response.
It's about a study passed with 80-125% limits. Then our regulation asked us to tighten the limits to 90-111. Do we have to verify that the power is above 80% after tightening the limits?

Best regards.
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2024-01-30 10:43
(33 d 15:31 ago)

@ Imph
Posting: # 23850
Views: 501
 

 Tightening the limits reduces power for a given sample size

Hi Imph,

❝ Thank you for the response.

Welcome.

❝ It's about a study passed with 80-125% limits.

All is good. Celebrate.

❝ Then our regulation asked us to tighten the limits to 90-111.

That’s strange, politely speaking. Did the agency see/accept the protocol?

❝ Do we have to verify that the power is above 80% after tightening the limits?

No. Read the quote of the WHO above and my article again.
Post hoc power (\(\small{\widehat{\pi}}\)) is – completely – irrelevant in BE. Only a priori power (\(\small{\pi}\)) is important in designing a study.

Even if all of your assumptions (CV, T/R-ratio, eligible subjects) based on the conventional limits of 80–125% were exactly realized (then \(\small{\widehat{\pi}=\pi}\)), for the tightened limits power will be lower than planned. As long as you pass BE, it does not matter. If you fail – which is very likely – start an argument with the agency, but please not based on post hoc power.

Example:

library(PowerTOST)
CV     <- 0.175
design <- "2x2x2"
theta0 <- 0.95
target <- 0.80
theta1 <- c(0.80, 0.90)
theta2 <- c(1.25, 1 / 0.90)
n      <- sampleN.TOST(CV = CV, design = design, theta0 = theta0,
                       theta1 = theta1[1], theta2 = theta2[1],
                       targetpower = target, print = FALSE)[["Sample size"]]
CI     <- CI.BE(CV = CV, pe = theta0, n = n, design = design)
comp   <- data.frame(theta1 = theta1, theta2 = theta2, n = n, PE = theta0,
                     lower.CL = CI[["lower"]], upper.CL = CI[["upper"]],
                     BE = "fail", power = NA)
for (j in 1:nrow(comp)) {
  if (comp$lower.CL[j] >= as.numeric(comp$theta1[j]) &
      comp$upper.CL[j] <= as.numeric(comp$theta2[j])) comp$BE[j] <- "pass"
  comp$power[j]  <- power.TOST(CV = CV, design = design, theta0 = theta0,
                               theta1 = theta1[j], theta2 = theta2[j], n = n)
  comp$theta1[j] <- sprintf("%.4f", as.numeric(comp$theta1[j]))
  comp$theta2[j] <- sprintf("%.4f", as.numeric(comp$theta2[j]))
  comp$PE[j]     <- sprintf("%.4f", as.numeric(comp$PE[j]))
}
comp[, c(5:6, 8)] <- round(comp[, c(5:6, 8)], 4)
names(comp)[c(1:2, 7)]  <- c("L", "U", "BE?")
txt <- paste("Study designed based on the conventional limits",
             "\n{L = 0.8000, U = 1.2500}; all assumptions are",
             "\nexactly realized in the study.\n")
cat(txt); print(comp, row.names = FALSE)

Study designed based on the conventional limits
{L = 0.8000, U = 1.2500}; all assumptions are
exactly realized in the study.
      L      U  n     PE lower.CL upper.CL  BE?  power
 0.8000 1.2500 16 0.9500   0.8526   1.0585 pass 0.8401
 0.9000 1.1111 16 0.9500
   0.8526   1.0585 fail 0.0694

You will fail with the tightened limits (lower confidence limit below L) and the loss in power will be massive.
For tightened limits much larger sample sizes would be required – unless the T/R-ratio is closer to 1. That’s why the FDA requires more strict batch release specifications and the default theta0 = 0.975 in the function sampleN.NTID(). See also this article.

CV     <- seq(0.1, 0.2, 0.01)
design <- "2x2x2"
theta0 <- 0.95 # not a good idea for NTIDs
target <- 0.80
theta1 <- c(0.80, 0.90)
theta2 <- c(1.25, 1 / 0.90)
comp   <- data.frame(CV = CV,
                     L1 = rep(theta1[1], length(CV)),
                     U1 = rep(theta2[1], length(CV)), n1 = NA, pwr1 = NA,
                     L2 = rep(theta1[2], length(CV)),
                     U2 = rep(theta2[2], length(CV)), n2 = NA, pwr2 = NA)
for (j in seq_along(CV)) {
  tmp          <- sampleN.TOST(CV = CV[j], design = design, theta0 = theta0,
                               theta1 = theta1[1], theta2 = theta2[1],
                               targetpower = target, print = FALSE)
  if (tmp[["Sample size"]] < 12) {
    comp$n1[j]   <- 12 # force to minimum acc. to guidelines
    comp$pwr1[j] <- power.TOST(CV = CV[j], design = design, theta0 = theta0,
                               theta1 = theta1[1], theta2 = theta2[1], n = 12)
  } else {
    comp$n1[j]   <- tmp[["Sample size"]]
    comp$pwr1[j] <- tmp[["Achieved power"]]
  }
  tmp          <- sampleN.TOST(CV = CV[j], design = design, theta0 = theta0,
                               theta1 = theta1[2], theta2 = theta2[2],
                               targetpower = target, print = FALSE)
  comp$n2[j]   <- tmp[["Sample size"]]
  comp$pwr2[j] <- tmp[["Achieved power"]]
}
comp             <- round(comp, 4)
names(comp)[2:9] <- rep(c("L", "U", "n", "power"), 2)
print(comp, row.names = FALSE)

   CV   L    U  n  power   L      U   n  power
 0.10 0.8 1.25 12 0.9883 0.9 1.1111  44 0.8040
 0.11 0.8 1.25 12 0.9724 0.9 1.1111  54 0.8115
 0.12 0.8 1.25 12 0.9476 0.9 1.1111  62 0.8007
 0.13 0.8 1.25 12 0.9148 0.9 1.1111  74 0.8083
 0.14 0.8 1.25 12 0.8753 0.9 1.1111  84 0.8022
 0.15 0.8 1.25 12 0.8305 0.9 1.1111  96 0.8018
 0.16 0.8 1.25 14 0.8487 0.9 1.1111 110 0.8055
 0.17 0.8 1.25 14 0.8057 0.9 1.1111 122 0.8003
 0.18 0.8 1.25 16 0.8204 0.9 1.1111 138 0.8045
 0.19 0.8 1.25 18 0.8294 0.9 1.1111 152 0.8014
 0.20 0.8 1.25 20 0.8347 0.9 1.1111 168 0.8015


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
UA Flag
Activity
 Admin contact
22,919 posts in 4,807 threads, 1,641 registered users;
20 visitors (0 registered, 20 guests [including 5 identified bots]).
Forum time: 02:14 CET (Europe/Vienna)

The analysis of variance is not a mathematical theorem,
but rather a convenient method of arranging the arithmetic.    R.A. Fisher

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5