balakotu
★    

India,
2023-05-23 14:16
(360 d 19:41 ago)

Posting: # 23564
Views: 1,150
 

 Data analysis and sample size for replicate study designs as per recent FDA guidance [Regulatives / Guidelines]

Dear All,

Please give me your valuable inputs.

Q) As per Recent FDA Draft Guidance they introduced 3-period, 2 -sequence full replicate study design.

Replicated crossover designs:

Other fully replicated crossover designs are also possible. For example, a three-period design, as shown below, could be used. A fully replicated design can estimate the subject-by-formulation interaction variance components.

I am unable to calculate Estimates as per the below SAS code for Reference variability and Scaled average bioequivalence.

/*TRT and RTR*/ /*Reference Variability*/

%macro Analysis(Par,Code);
proc Mixed data=scavbe;
class seq;
model &Par =seq/ddfm=satterth;
estimate "&Par" intercept 1 seq 0.5 0.5/e cl alpha=0.1;
ods output CovParms=dout1&Code;
ods output Estimates=dout2&Code;
ods output NObs=dout3&Code;
title1 ‘Intra subject variability of Reference';
title2 "&Par-Analysis";
run;
%mend Analysis;
%Analysis(Cmax,1);
%Analysis(AUCt,2);
%Analysis(AUCi,3);

/* Scaled average BE'*/

%macro Analysis(Par,Code);
proc Mixed data=scavbe1;
class seq;
model Ln&Par =seq/ddfm=satterth;
estimate "&Par" intercept 1 seq 0.5 0.5/e cl alpha=0.1;
ods output CovParms=iout1&Code;
ods output Estimates=iout2&Code;
ods output NObs=iout3&Code;
title1 'SCALED Average BE';
title2 "&Par-Analysis";
run;
%mend Analysis;

%Analysis(Cmax,1);
%Analysis(AUCt,2);
%Analysis(AUCi,3);

Please let me know if any idea or thoughts?

Q) Two-Period Replicated Crossover Designs

For this Two-Period Replicated Crossover Designs i.e. the modified Balaam design (TR, RT, RR) -----How to calculate Sample size using R-Software.

Regards
Kotu
UA Flag
Activity
 Admin contact
23,029 posts in 4,834 threads, 1,641 registered users;
32 visitors (0 registered, 32 guests [including 7 identified bots]).
Forum time: 09:58 CEST (Europe/Vienna)

The most erroneous stories are those we think we know best–
and therefore never scrutinize or question.    Stephen Jay Gould

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5