pharm07
☆    

India,
2022-05-03 13:23
(918 d 20:39 ago)

Posting: # 22953
Views: 3,679
 

 Estimation of sample size for NIT using ISCV By R [Power / Sample Size]

Hi,

Can anyone guide, how to calculate sample size for NTI category drug using R software? I have primary information as ISCV.


Edit: Category changed; see also this post #1[Helmut]

Regards,
pharm07
dshah
★★  

India,
2022-05-03 15:04
(918 d 18:57 ago)

@ pharm07
Posting: # 22954
Views: 3,273
 

 Estimation of sample size for NTI using ISCV By R

Hello Pharm07!
Kindly use PowerTOST and also search for earlier post.
Regards,
Dshah
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2022-05-03 16:38
(918 d 17:23 ago)

@ pharm07
Posting: # 22955
Views: 3,014
 

 PowerTOST

Hi pharm07,

as suggested by Dshah, assuming a T/R-ratio of 0.975 and a CV of 0.1:

library(PowerTOST) # attach the library
theta0 <- 0.975    # assumed T/R-ratio
CV     <- 0.10     # intra-subject CV (assuming CVwT = CVwR)
target <- 0.80     # target power
design <- "2x2x4"  # 4-period full replicate mandatory for the FDA

# EMA and most others:
sampleN.TOST(CV = CV, theta0 = theta0, theta1 = 0.90,
             design = design, targetpower = target)

+++++++++++ Equivalence test - TOST +++++++++++
            Sample size estimation
-----------------------------------------------
Study design: 2x2x4 (4 period full replicate)
log-transformed data (multiplicative model)

alpha = 0.05, target power = 0.8
BE margins = 0.9 ... 1.111111
True ratio = 0.975,  CV = 0.1

Sample size (total)
 n     power
12   0.856278


# FDA and China CDE:
sampleN.NTID(CV = CV, theta0 = theta0, design = design,
             targetpower = target)

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.1, CVw(R) = 0.1
True ratio     = 0.975
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.9002 ... 1.1108
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Sample size search
 n     power
14   0.717480
16   0.788690
18   0.841790


# Beware of unequival variances!
CV.bad  <- signif(CVp2CV(CV, ratio = 1.5), 4)     # T worse than R
sampleN.NTID(CV = CV.bad, theta0 = theta0, design = design,
             targetpower = target)

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.1096, CVw(R) = 0.0894
True ratio     = 0.975
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.9103 ... 1.0986
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Sample size search
 n     power
20   0.758770
22   0.805070


CV.good <- signif(CVp2CV(CV, ratio = 1 / 1.5), 4) # T better than R
sampleN.NTID(CV = CV.good, theta0 = theta0, design = design,
             targetpower = target)

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.0894, CVw(R) = 0.1096
True ratio     = 0.975
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.8912 ... 1.1220
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Sample size search
 n     power
12   0.735990
14   0.814770


More details and examples in this article.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
pharm07
☆    

India,
2022-05-04 10:08
(917 d 23:54 ago)

@ Helmut
Posting: # 22958
Views: 3,113
 

 PowerTOST

HI Helmut,

Thanks for the information.

After installing package from local file, (https://cloud.r-project.org/)

response in R console : > utils:::menuInstallLocal()
package ‘PowerTOST’ successfully unpacked and MD5 sums checked

Even after this step i am not able to attach power tost to the library.

After this step i can able to do further.

[Using R 4.2.0]
Please suggest.

Regards,
pharm07
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2022-05-04 12:33
(917 d 21:28 ago)

@ pharm07
Posting: # 22959
Views: 3,050
 

 PowerTOST

Hi pharm07,

❝ response in R console : > utils:::menuInstallLocal()

package ‘PowerTOST’ successfully unpacked and MD5 sums checked


OK, so you ended up as shown there (example for Power2Stage).

❝ Even after this step i am not able to attach power tost to the library.


Package library. Not sure what you mean, can you explain?

❝ After this step i can able to do further.


OK.

❝ Please suggest.


Copy one of the examples of my previous post and paste it to the [image] console. If you want to go for the FDA’s method, just a one-liner because theta0 = 0.975, design = "2x2x4", and targetpower = 0.8 are defaults of the function. Hence, you have to specify only the CV:

sampleN.NTID(CV = 0.1)

Should give:

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.1, CVw(R) = 0.1
True ratio     = 0.975
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.9002 ... 1.1108
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Sample size search
 n     power
14   0.717480
16   0.788690
18   0.841790


Since this is a four-period design, you may want to increase the sample size to compensate for a potential loss in power due to dropouts.

balance <- function(n, n.seq) {
  # Round up to obtain balanced sequences
  return(as.integer(n.seq * (n %/% n.seq + as.logical(n %% n.seq))))
}
nadj <- function(n, do.rate, n.seq) {
  # Round up to compensate for anticipated dropout-rate
  return(as.integer(balance(n / (1 - do.rate), n.seq)))
}
CV      <- 0.1                 # Assumed CV
do.rate <- 0.15                # Anticipated dropout-rate 15%
n       <- sampleN.NTID(CV = CV, print = FALSE, details = FALSE)[["Sample size"]]
dosed   <- nadj(n, do.rate, 2) # Adjust the sample size
df      <- data.frame(dosed = dosed, eligible = dosed:(n - 2))
for (j in 1:nrow(df)) {
  df$dropouts[j] <- sprintf("%.1f%%", 100 * (1 - df$eligible[j] / df$dosed[j]))
  df$power[j]    <- suppressMessages( # We know that some are unbalanced
                      power.NTID(CV = CV, n = df$eligible[j]))
}
print(df, row.names = FALSE)

 dosed eligible dropouts   power
    22       22     0.0% 0.91017
    22       21     4.5% 0.89602
    22       20     9.1% 0.88031
    22       19    13.6% 0.86072
    22       18    18.2% 0.84179
    22       17    22.7% 0.81658
    22       16    27.3% 0.78869


If you are confused, see there.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
pharm07
☆    

India,
2022-05-04 16:54
(917 d 17:08 ago)

@ Helmut
Posting: # 22961
Views: 3,061
 

 PowerTOST

Hi,

Package library. Not sure what you mean, can you explain?


I meant i was not able to execute library(PowerTOST) command.


Now, i am able to estimate sample size..!

Your guidance is much more appreciable.

Thanks.. :-)

Regards,
pharm07
pharm07
☆    

India,
2022-05-11 07:30
(911 d 02:32 ago)

@ pharm07
Posting: # 22968
Views: 2,869
 

 PowerTOST

Hi Helmut,

Let me understand again by looking following framework,
Following data is available with me,
Target power : eg, 0.8, .85, 0.9, CwT,CwR,sigWT,SigWR,theta0,theta1,theta2.
i want to estimate sample size for low to moderate NTID. Also to estimate sample size by assuming 30 & 40 % dropout rate.
I have gone through the examples. Sometimes error comes as its beyond implied limit. Heteroscedasticity can be challenging for me as T>R.

Can you check and verify if i am using correct programming. This Example.

Regards,
pharm07
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2022-05-11 15:19
(910 d 18:42 ago)

@ pharm07
Posting: # 22970
Views: 2,842
 

 PowerTOST: sampleN.NTID()

Hi pharm07,

❝ Let me understand again by looking following framework,

❝ Following data is available with me,

❝ Target power : eg, 0.8, .85, 0.9, CwT,CwR,sigWT,SigWR,theta0,theta1,theta2.


Although you could give values of theta1 and theta2, for the FDA keep the defaults of 0.8 and 1.25 (i.e., don’t specify anything): Additionally to passing RSABE and the variance-comparison you must pass conventional ABE.

❝ i want to estimate sample size for low to moderate NTID.


More examples are given there.

❝ Also to estimate sample size by assuming 30 & 40 % dropout rate.


See the two supportive functions in the section about dropouts in the named article.

❝ I have gone through the examples. Sometimes error comes as its beyond implied limit.


That’s possible if you specify a low or high theta0. Background: $$\eqalign{s_0&=0.1\tag{1}\\
\theta_\text{s}&=\frac{\log_e(1/0.9)}{s_0}\approx1.053605\ldots\\
\left\{\theta_{\text{s}_1},\theta_{\text{s}_2}\right\}&=\exp(\mp\theta_\text{s}\cdot s_\text{wR}),
}$$ where \(\small{s_0}\) is the regulatory switching condition, \(\small{\theta_\text{s}}\) the regulatory constant, and finally \(\small{\left\{\theta_{\text{s}_1},\theta_{\text{s}_2}\right\}}\) are the implied limits. Say, you assume \(\small{CV_\text{wR}=0.1}\). Since $$s_\text{wR}=\sqrt{\log_e(CV_\text{wR}^2+1)}\tag{2}$$ and by using \(\small{(1)}\) you end up with $$\left\{\theta_{\text{s}_1},\theta_{\text{s}_2}\right\}=\left\{0.9002,1.1108\right\}.\tag{3}$$ In other words, for this \(\small{CV_\text{wR}}\) any theta0 outside these limits cannot work. That’s by design:

library(PowerTOST)
sampleN.NTID(CV = 0.1, theta0 = 0.90)

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.1, CVw(R) = 0.1
True ratio     = 0.9
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.9002 ... 1.1108
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Error: theta0 outside implied scABE limits! No sample size estimable.


Would you want to estimate a sample size for conventional ABE with a T/R-ratio outside 80–125%? Try:

sampleN.TOST(CV = 0.1, theta0 = 0.7999) # any (!) CV, targetpower, design


For NTIDs the FDA requires stricter batch-release spec’s (±5% instead of the common ±10%). There­fore, theta0 = 0.975 is the default of this function. I would not go below 0.95 unless the CV is relatively high (no scaling if \(\small{CV_\text{wR}\geq0.2142}\)).

❝ Heteroscedasticity can be challenging for me as T>R.


Yes, you are not alone.

❝ Can you check and verify if i am using correct programming.


I can’t till you post an example which you consider problematic.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
pharm07
☆    

India,
2022-05-18 07:18
(904 d 02:43 ago)

@ Helmut
Posting: # 22995
Views: 2,768
 

 PowerTOST: sampleN.NTID()

Hi Helmut,

❝ Although you could give values of theta1 and theta2, for the FDA keep the defaults of 0.8 and 1.25 (i.e., don’t specify anything): Additionally to passing RSABE and the variance-comparison you must pass conventional ABE.


OK. Noted.

❝ More examples are given there.


OK. I referred these examples.

❝ See the two supportive functions in the section about dropouts in the named article.


Ok, I have pasted one example which i seems to be work upon.

❝ That’s possible if you specify a low or high theta0.


OK.

❝ Yes, you are not alone.

:ponder:

❝ I can’t till you post an example which you consider problematic.


Please see below example,
Note : CV is not in scalar form.'

sampleN.NTID(CV = c(0.045,0.07), theta0 = 0.95, targetpower = 0.9)

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.9
CVw(T) = 0.045, CVw(R) = 0.07
True ratio     = 0.95
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.9290 ... 1.0764
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Sample size search
 n     power
92   0.875810
94   0.882090
96   0.888810
98   0.894060
100   0.898510
102   0.903540


# with 30% DO rate,

# as CV was specified as Vector,
# is following steps right?
balance <- function(n, n.seq) {
  # Round up to obtain balanced sequences
  return(as.integer(n.seq * (n %/% n.seq + as.logical(n %% n.seq))))
}
nadj <- function(n, do.rate, n.seq) {
  # Round up to compensate for anticipated dropout-rate
  return(as.integer(balance(n / (1 - do.rate), n.seq)))
}
CV      <- 0.045               # Assumed CV # how to specify vector CV here?
do.rate <- 0.30                # Anticipated dropout-rate 30%
n       <- sampleN.NTID(CV = CV, print = FALSE, details = FALSE)[["Sample size"]]
dosed   <- nadj(n, do.rate, 2) # Adjust the sample size
df      <- data.frame(dosed = dosed, eligible = dosed:(n - 2))
for (j in 1:nrow(df)) {
  df$dropouts[j] <- sprintf("%.1f%%", 100 * (1 - df$eligible[j] / df$dosed[j]))
  df$power[j]    <- suppressMessages( # We know that some are unbalanced
                      power.NTID(CV = CV, n = df$eligible[j]))
}
print(df, row.names = FALSE)
dosed eligible dropouts   power
   58       58     0.0% 0.92040
   58       57     1.7% 0.91575
   58       56     3.4% 0.91254
   58       55     5.2% 0.90722
   58       54     6.9% 0.90364
   58       53     8.6% 0.89761
   58       52    10.3% 0.89257
   58       51    12.1% 0.88767
   58       50    13.8% 0.88215
   58       49    15.5% 0.87672
   58       48    17.2% 0.86952
   58       47    19.0% 0.86376
   58       46    20.7% 0.85690
   58       45    22.4% 0.84922
   58       44    24.1% 0.84310
   58       43    25.9% 0.83486
   58       42    27.6% 0.82810
   58       41    29.3% 0.81915
   58       40    31.0% 0.81109
   58       39    32.8% 0.80105
   58       38    34.5% 0.79410


Kindly guide me with this example, i want to check whether i am making a mistake or not.:confused:

Regards,
pharm07
Helmut
★★★
avatar
Homepage
Vienna, Austria,
2022-05-18 16:30
(903 d 17:32 ago)

@ pharm07
Posting: # 23002
Views: 4,328
 

 sampleN.NTID(): Example

Hi pharm07,

❝ Kindly guide me with this example, i want to check whether i am making a mistake or not.:confused:


In your second script you forgot to state theta0 = 0.95. Hence, the default theta = 0.975 was employed.

library(PowerTOST)
balance <- function(n, n.seq) {
  # Round up to obtain balanced sequences
  return(as.integer(n.seq * (n %/% n.seq + as.logical(n %% n.seq))))
}
nadj <- function(n, do.rate, n.seq) {
  # Round up to compensate for anticipated dropout-rate
  return(as.integer(balance(n / (1 - do.rate), n.seq)))
}
CV      <- c(0.045, 0.07)      # First element CVwT, second CVwR
do.rate <- 0.30                # Anticipated dropout-rate 30%
n       <- sampleN.NTID(CV = CV, theta0 = 0.95, targetpower = 0.90,
                        print = FALSE, details = FALSE)[["Sample size"]]
dosed   <- nadj(n, do.rate, 2) # Adjust the sample size
df      <- data.frame(dosed = dosed, eligible = dosed:(n - 2))
for (j in 1:nrow(df)) {
  df$dropouts[j] <- sprintf("%.1f%%", 100 * (1 - df$eligible[j] / df$dosed[j]))
  df$power[j]    <- suppressMessages(
                      power.NTID(CV = CV, theta0 = 0.95, n = df$eligible[j]))
}
print(df, row.names = FALSE)

 dosed eligible dropouts   power
   146      146     0.0% 0.97046
   146      145     0.7% 0.96815
   146      144     1.4% 0.96887
   146      143     2.1% 0.96730
   146      142     2.7% 0.96592
   146      141     3.4% 0.96512
   146      140     4.1% 0.96470
   146      139     4.8% 0.96316
   146      138     5.5% 0.96322
   146      137     6.2% 0.96172
   146      136     6.8% 0.96048
   146      135     7.5% 0.95969
   146      134     8.2% 0.95892
   146      133     8.9% 0.95649
   146      132     9.6% 0.95497
   146      131    10.3% 0.95505
   146      130    11.0% 0.95347
   146      129    11.6% 0.95245
   146      128    12.3% 0.95101
   146      127    13.0% 0.94969
   146      126    13.7% 0.94851
   146      125    14.4% 0.94723
   146      124    15.1% 0.94594
   146      123    15.8% 0.94386
   146      122    16.4% 0.94258
   146      121    17.1% 0.94121
   146      120    17.8% 0.94039
   146      119    18.5% 0.93931
   146      118    19.2% 0.93649
   146      117    19.9% 0.93461
   146      116    20.5% 0.93393
   146      115    21.2% 0.93164
   146      114    21.9% 0.92946
   146      113    22.6% 0.92741
   146      112    23.3% 0.92519
   146      111    24.0% 0.92361
   146      110    24.7% 0.92132
   146      109    25.3% 0.91851
   146      108    26.0% 0.91725
   146      107    26.7% 0.91563
   146      106    27.4% 0.91393
   146      105    28.1% 0.91186
   146      104    28.8% 0.90848
   146      103    29.5% 0.90711
   146      102    30.1% 0.90354
   146      101    30.8% 0.90250
   146      100    31.5% 0.89851

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
pharm07
☆    

India,
2022-05-19 07:36
(903 d 02:26 ago)

@ Helmut
Posting: # 23003
Views: 3,025
 

 sampleN.NTID(): Example

Hi Helmut,

I got it..!

Thanks for the interaction and time :ok:

Regards,
pharm07
UA Flag
Activity
 Admin contact
23,288 posts in 4,890 threads, 1,661 registered users;
87 visitors (0 registered, 87 guests [including 14 identified bots]).
Forum time: 09:02 CET (Europe/Vienna)

There are no dangerous thoughts;
thinking itself is dangerous.    Hannah Arendt

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5