udayk ☆ India, 2020-03-06 10:00 (1781 d 19:04 ago) Posting: # 21214 Views: 8,901 |
|
Dear All, Please help us for outlier test using Phoenix WinNonlin Software (Studentized residual method) and R-Software (code) in the Bioequivalence 2way cross design. Regards, UdayK. Edit: category changed and two successive posts merged [Ohlbe] |
ping4santosh ★ India, 2020-03-11 15:58 (1776 d 13:06 ago) @ udayk Posting: # 21250 Views: 5,970 |
|
Hi Uday, Please let me know more details. I can help you with outliers treatment. Best, SKM |
Helmut ★★★ Vienna, Austria, 2020-03-13 12:21 (1774 d 16:43 ago) @ udayk Posting: # 21267 Views: 5,960 |
|
Hi UdayK, ❝ […] outlier test using Phoenix WinNonlin Software (Studentized residual method) and R-Software (code) in the Bioequivalence 2way cross design. “Studentized residual” is an ambiguous term. There are two flavors:
Both are easily obtained in SAS, R,… In R for the fixed effects model (untested!):
BTW, which outlier test are you thinking of? See also there and this thread at stackoverflow. — Dif-tor heh smusma 🖖🏼 Довге життя Україна! Helmut Schütz The quality of responses received is directly proportional to the quality of the question asked. 🚮 Science Quotes |
ping4santosh ★ India, 2020-03-14 15:52 (1773 d 13:12 ago) @ udayk Posting: # 21269 Views: 5,827 |
|
Hi Uday, Try Lund test in R package. If you want, I can help you out. Cheers, SKM |
udayk ☆ India, 2020-03-20 08:05 (1767 d 20:59 ago) @ ping4santosh Posting: # 21288 Views: 5,734 |
|
Hi SKM, Please help us. Regards, Uday |
ping4santosh ★ India, 2020-03-20 11:07 (1767 d 17:57 ago) (edited on 2020-03-21 03:37) @ udayk Posting: # 21289 Views: 5,632 |
|
❝ Please help us. Hi Uday: I shall need access to the data and the background info. Cheers, SKM NB: my email ID is my ID here in Gmail. |
yjlee168 ★★★ Kaohsiung, Taiwan, 2020-03-20 15:45 (1767 d 13:19 ago) @ udayk Posting: # 21291 Views: 5,658 |
|
Hi udayk, You may consider bear - an R package if you like. With bear, you can do outlier detection analysis (ODA) for a 2x2x2 BE study. Bear provides the following ODAs:
— All the best, -- Yung-jin Lee bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee Kaohsiung, Taiwan https://www.pkpd168.com/bear Download link (updated) -> here |
xtianbadillo ☆ Mexico, 2024-12-16 21:44 (35 d 07:20 ago) @ yjlee168 Posting: # 24317 Views: 809 |
|
Good morning, I was performing some residual analyses while also checking if my bear 2.9.2 was correctly installed on my PC with Windows 10. I reviewed the version 2 validation file and compared it against the residuals, and I discovered that there is an error in my system, although I haven’t yet identified what it is. The residuals I obtain are different from the values reported in the validation. Using the same dataset, I ran it in R to obtain the residuals, and they match those in the validation. Later, I will run an older version I have on Windows 7. I am sharing the results. From by Hsin-ya Lee & Yung-jin Lee (09/07/2009) Validation of bear using WNL & SAS VERSION 2 Page 122 of 162 Intra-subject and Inter-subject Residuals -------------------------------------------------------------------------- subj Obs Exp Intra Stud_Intra Inter Stud_Inter 1 1 7.398174 7.491068 -0.092894 -1.126022 0.138200 0.723698 2 2 7.300473 7.409175 -0.108702 -1.317638 0.098454 0.515564 3 3 7.636752 7.622009 0.014743 0.178707 0.400081 2.095061 4 4 7.225481 7.311596 -0.086115 -1.043844 -0.096705 -0.506404 5 5 7.233455 7.352791 -0.119336 -1.446539 -0.138354 -0.724503 6 6 7.470794 7.400282 0.070512 0.854712 0.080667 0.422421 7 7 7.404279 7.441728 -0.037449 -0.453938 0.039519 0.206946 8 8 7.569928 7.479503 0.090425 1.096082 0.239110 1.252122 9 9 7.472501 7.445906 0.026595 0.322378 0.047874 0.250697 10 10 7.235619 7.269715 -0.034096 -0.413295 -0.180467 -0.945031 11 11 7.427739 7.288976 0.138763 1.682023 -0.265986 -1.392859 12 12 7.340836 7.235661 0.105175 1.274886 -0.248576 -1.301690 13 13 7.380879 7.311301 0.069578 0.843390 -0.221335 -1.159040 14 14 7.376508 7.413706 -0.037198 -0.450902 0.107516 0.563018 From Bear 2.9.2 Using Single2x2x2_stat_demo Statistical Analysis Only * Intra-subject and Inter-subject Residuals * --------------------------------------------- subj Obs Exp Intra Stud_Intra Inter Stud_Inter 1 7.400000 7.490714 -0.090714 -1.100692 0.138571 0.727189 2 7.300000 7.410714 -0.110714 -1.343364 0.098571 0.517279 3 7.640000 7.620714 0.019286 0.234005 0.398571 2.091605 4 7.230000 7.315714 -0.085714 -1.040024 -0.091429 -0.479795 5 7.230000 7.350714 -0.120714 -1.464700 -0.141429 -0.742182 6 7.470000 7.400714 0.069286 0.840686 0.078571 0.412324 7 7.400000 7.440714 -0.040714 -0.494011 0.038571 0.202413 8 7.570000 7.480714 0.089286 1.083358 0.238571 1.251964 9 7.470000 7.445714 0.024286 0.294673 0.048571 0.254891 10 7.240000 7.270714 -0.030714 -0.372675 -0.181429 -0.952092 11 7.430000 7.290714 0.139286 1.690039 -0.261429 -1.371913 12 7.340000 7.235714 0.104286 1.265362 -0.251429 -1.319435 13 7.380000 7.310714 0.069286 0.840686 -0.221429 -1.162003 14 7.380000 7.415714 -0.035714 -0.433343 0.108571 0.569756 From Bear 2.9.2 Using Single2x2x2_stat_demo NCA ->Statistical Analysis Only --------------------------------------------- * Intra-subject and Inter-subject Residuals * --------------------------------------------- subj Obs Exp Intra Stud_Intra Inter Stud_Inter 1 7.398174 7.491068 -0.092894 -1.063472 0.138200 0.686507 2 7.300473 7.397679 -0.097206 -1.112839 0.075462 0.374856 3 7.636752 7.622009 0.014743 0.168782 0.400081 1.987400 4 7.225481 7.300100 -0.074618 -0.854246 -0.119697 -0.594594 5 7.233455 7.352792 -0.119336 -1.366186 -0.138354 -0.687270 6 7.470794 7.388785 0.082008 0.938847 0.057674 0.286497 7 7.404279 7.441728 -0.037449 -0.428723 0.039519 0.196312 8 7.569928 7.468007 0.101920 1.166805 0.216118 1.073564 9 7.472501 7.445906 0.026595 0.304466 0.047874 0.237815 10 7.235619 7.258219 -0.022600 -0.258728 -0.203459 -1.010680 11 7.427739 7.288975 0.138764 1.588593 -0.265986 -1.321286 12 7.340836 7.224164 0.116671 1.335678 -0.271569 -1.349016 13 7.380879 7.311301 0.069578 0.796540 -0.221334 -1.099478 14 7.376508 7.482683 -0.106175 -1.215516 0.245470 1.219372 ejemplo <- lm (lnCmax~Secuencia+Sujeto*Secuencia+Tratamiento+Periodo , data=datos) anova(ejemplo) valores_predichos <- round(fitted(ejemplo),4) residuales <- round(residuals(ejemplo),4) residuales_std <- round(rstandard(ejemplo),4) residuales_stu <- round(rstudent(ejemplo),4) valores_observados valores_predichos residuales residuales_std residuales_stu 1 7.4611 7.3682 0.0929 1.1260 1.1400 2 7.3005 7.4092 -0.1087 -1.3176 -1.3641 3 7.4844 7.4991 -0.0147 -0.1787 -0.1713 4 7.2255 7.3116 -0.0861 -1.0438 -1.0481 5 7.3492 7.2299 0.1193 1.4465 1.5242 6 7.4708 7.4003 0.0705 0.8547 0.8444 |