Sequence effect bear vs WinNonlin opposite results [Software]

posted by Risherd – Mexico, 2012-08-29 20:09 (4631 d 22:42 ago) – Posting: # 9125
Views: 7,463

Thank you all for your answers and excuse me for the delay of my reply

In request to ElMaestro and Helmut

❝ if you paste the ANOVA tables from Winnonlin and Bear then it will be possible thorugh the MS to....determine...the source of this phenomenon....


here are my results from AUC0-t using WinNonlin 6.3.


- WinNonlin

- Response: Log10(AUCall)

Dependent     |  Units  |      Hypotesis     | DF |    SS    |    MS   | F-value  | P-value
-------------------------------------------------------------------------------------------
Log10(AUCall) | h*µg/mL | Sequence           |  1 | 0.086471 | 0.086471| 4.348724 | 0.07053
Log10(AUCall) | h*µg/mL | Sequence*Volunteer |  8 | 0.019884 | 0.019884| 28.513921| 0.00004
Log10(AUCall) | h*µg/mL | Product            |  1 | 0.014607 | 0.014067| 7.639860 | 0.02452
Log10(AUCall) | h*µg/mL | Period             |  1 | 0.007480 | 0.007480| 3.912380 | 0.08331
Log10(AUCall) | h*µg/mL | Error              |  8 | 0.015296 | 0.001912

- Bear

- Response:
Statistical analysis (ANOVA(lm))   
-----------------------------------------------------------
   Dependent Variable: log(AUC0t)     

Analysis of Variance Table

Response: log(AUC0t)
          Df  Sum Sq  Mean Sq F value    Pr(>F)   
prd        1 0.08335 0.083349  22.543  0.001449 **
drug       1 0.06330 0.063303  17.122  0.003263 **
subj(seq)  8 0.84340 0.105425  28.514 4.248e-05 ***
Residuals  8 0.02958 0.003697                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Analysis of Variance Table

Response: log(AUC0t)
           DF  Type III SS  Mean Square  F Value    Pr > F
prd         1      0.08335     0.083349   22.543 0.0014490
drug        1      0.06330     0.063303   17.122 0.0032632
subj(seq)   8      0.84340     0.105425   28.514 0.0000425
-----------------------------------------------------------

Tests of Hypothesis using the Type I MS for
SUBJECT(SEQUENCE) as an error term
            Df Sum Sq Mean Sq F value Pr(>F) 
seq          1 0.4585  0.4585   8.093 0.0107 *
Residuals   18 1.0196  0.0566                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tests of Hypothesis using the Type III MS for
SUBJECT(SEQUENCE) as an error term
            Df Sum Sq Mean Sq F value Pr(>F) 
seq          1 0.4585  0.4585   8.093 0.0107 *
Residuals   18 1.0196  0.0566                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


I found out that WinNonlin estimate the F-value like this
Sequence effect
F-value = MS sequence / MS sequence*volunteer


Using Bear data and applying the previous formula I obtain the same result of WinNonlin
F-value = 0.4585/0.105425 = 4.34.

I think that is the root of the situation, and please correct me if I´m wrong.

Gracias! ;-)

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,671 registered users;
84 visitors (0 registered, 84 guests [including 5 identified bots]).
Forum time: 18:51 CEST (Europe/Vienna)

My doctor gave me six months to live,
but when I couldn’t pay the bill
he gave me six months more.    Walter Matthau

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5