'Non-superiority' - sample size [Regulatives / Guidelines]

posted by d_labes  – Berlin, Germany, 2012-03-20 16:48 (4441 d 14:09 ago) – Posting: # 8305
Views: 6,909

(edited by d_labes on 2012-03-21 11:35)

Dear Helmut, dear Jaime!

❝ ❝ […] does that require the upper one-sided 95% CL included in 125% – or […] – assessing the upper limit of the 90% CI only?


❝ Both will work.


With the exception that the ICH E9 guidance suggests for one sided CIs an alpha=0.025 I think. Or am I wrong :confused:. That would require 95% CI's and assessing their upper limit only.

❝ ❝ How can we calculate the sample size?


❝ Ouch; good question! Steven Julious (Sample Sizes for Clinical Trials, 2010) gives a method for cross-over studies (actually the other way ’round: non-inferiority) but only for normal distributed data. Have to sleep over it.


Non-superiority is a rather unusual term :cool:. The other way round - non-inferiority - would mean that we formulate our problem as non-inferiority.
It's easy. Instead of the hypotheses
H0: µT/µR > 1.25 ('superiority')
HA: µT/µR < 1.25 ('non-superiority')

we formulate
H0: µR/µT < 0.8  ('inferiority')
HA: µR/µT > 0.8  ('non-inferiority')


In case of log-normal distributed data the hypotheses change as usual to hypotheses of differences
H0: log(µR) - log(µT) < -0.2231436 ('inferiority')
HA: log(µR) - log(µT) > -0.2231436 ('non-inferiority')


The corresponding test is a one-sided t-test which has power for a 2x2 crossover (Julious "Sample Sizes for Clinical Trials", 2010, equation 6.22)
1-beta = pt(t1-alpha,n-2,df=n-2,tau)

Edit: I can only reproduce PASS values for power and sample size if I use power=1-pt(...) although Julious termed (1-beta) power :confused:.

where pt() is the cumulative distribution function of the non-central t-distribution with non-centrality parameter
tau= abs((log(µT)-log(µR) - d)*sqrt(n)/sqrt(2*MSE))
and d=log(R0) with R0 the null or 'true' ratio.

BTW: PASS 2008 has a module "Noninferiority & superiority -> Two means in a 2x2 crossover -> specify using ratios" that will do the calculations for you. It contains also an option in that module which allows the calculations for the 'non-superiority' case named "Higher is bad".

If you don't own PASS here a quick shot in R:
(design is in the moment only a place holder, nothing other then 2x2 crossover is implemented)
# power function
# set margin to 1.25 to get 'higher is bad'

power.noninf <- function(alpha=0.025, margin=0.8, ratio0, CV, n, design="2x2")
{
  df   <- n-2   
  tval <- qt(1-alpha,df)
  se2  <- log(CV^2+1)
  tau  <- abs( (log(ratio0)-log(margin))*sqrt(n)/sqrt(2*se2) )
  return(1-pt(tval,df,tau))
}

# start value for sample size search from large sample formula
.sampleN0.noninf <- function(alpha=0.025, targetpower=0.8, margin, ratio0, CV)
{
  n0 <- 2*log(CV^2+1)*(qnorm(targetpower)+ qnorm(1-alpha))^2 / (log(ratio0)-log(margin))^2
  return(ceiling(n0))
}

# sample size estimation for non-inferiority test
sampleN.noninf <- function(alpha=0.025, targetpower=0.8, margin=0.8,
                           ratio0=1.05, CV, design="2x2", details=FALSE)
{
  step <- 2
  n    <- .sampleN0.noninf(alpha=alpha, targetpower=targetpower,
                           margin=margin, ratio0=ratio0, CV=CV)
  if (n<=4) n <- 4
  if (details){
    cat("Sample size search\n")
    cat(" n  power\n")
  }
  n    <- step*(n%/%step)
  pow  <- power.noninf(alpha=alpha, margin=margin, ratio0=ratio0, CV=CV, n=n)
 
  if (details) cat(n,pow,"\n")
  while (pow>targetpower){
    if (n<=4) break
    n <- n - step
    pow  <- power.noninf(alpha=alpha, margin=margin, ratio0=ratio0, CV=CV, n=n)
    if (details) cat(n,pow,"\n")
  }
  while(pow<targetpower){
    n <- n+step
    pow  <- power.noninf(alpha=alpha, margin=margin, ratio0=ratio0, CV=CV, n=n)
    if (details) cat(n,pow,"\n")
  }
  if (details) return(invisible(n)) else return(n)                       
}


For a targetpower=0.8, CV=0.3, margin=0.8 the last function will give the sample sizes
       alpha=
ratio0 0.025  0.05
  0.9   100    80
  0.95   48    38
  1.0    30    24
  1.05   22    16
  1.1    16    14


The whole discussion up to here depends on the assumption of log-normality. If this is a reasonable assumption for measures of fluctuation like PTF or swing is left to you.

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
23,029 posts in 4,834 threads, 1,641 registered users;
34 visitors (0 registered, 34 guests [including 9 identified bots]).
Forum time: 07:58 CEST (Europe/Vienna)

The most erroneous stories are those we think we know best–
and therefore never scrutinize or question.    Stephen Jay Gould

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5