Oops. [Regulatives / Guidelines]
Dear simulants!
Oh THX! Affects also the T-R. Latest version (flexible sample sizes, corrected T/R1 and T/R2):
Results:
I have no idea how to simulate CVintra; CVtotal is not what I really want (to see if reference’s different variances have an influence on the result).
❝ or what I would do
❝ FullModel <- lm(log(y1) ~ 0 + seq1 + sub1 %in% seq1 + per1 + trt1)
Oh THX! Affects also the T-R. Latest version (flexible sample sizes, corrected T/R1 and T/R2):
set.seed(12041958) # keep this line to compare results only
sims <- 10000 # <- no of sims
size <- 12 # <- no of subjects
# T/R1 = 95%, T/R2 = 105.26%
mean1 <- 0.95; cv1 <- mean1/100*30 # <- means & (total!) CVs here
mean2 <- 1.00; cv2 <- mean2/100*30 # <-
mean3 <- 0.95^2; cv3 <- mean3/100*30 # <-
seq1 <- as.factor(rep(rep(1:6, each = 3), size/6))
sub1 <- as.factor(rep(1:size, each = 3))
per1 <- as.factor(rep(1:3, size))
trt1 <- as.factor(rep(c(1,2,3, 2,3,1, 3,1,2, 1,3,2, 2,1,3, 3,2,1), size/6))
# massacrating out everything related to R2
# means that when T was before R1 we now have a seq 1 otherwise a seq 2
seq2 <- as.factor(rep(c(1,1, 2,2, 1,1, 1,1, 2,2, 2,2), size/6))
sub2 <- as.factor(rep(1:size, each = 2))
per2 <- as.factor(rep(1:2, size))
trt2 <- as.factor(rep(c(1,2, 2,1, 1,2, 1,2, 2,1, 2,1), size/6))
# see Martin's post: http://forum.bebac.at/mix_entry.php?id=5272
meanl1 <- log(mean1)-0.5*log(cv1^2+1); sdl1 <- sqrt(log(cv1^2+1))
meanl2 <- log(mean2)-0.5*log(cv2^2+1); sdl2 <- sqrt(log(cv2^2+1))
meanl3 <- log(mean3)-0.5*log(cv3^2+1); sdl3 <- sqrt(log(cv3^2+1))
RM.be <- 0; FM.be <- 0
FMCVintra <- NULL; RMCVintra <- NULL
for (iter in 1:sims) # T is 1, R1 is 2 and R2 is 3
{
y1 = rlnorm(n=size*3, meanlog=meanl1, sdlog=sdl1)
for (i in 1:size*3) if (trt1[i ]==2) y1[i ]=rlnorm(n=1,meanlog=meanl2,sdlog=sdl2)
for (i in 1:size*3) if (trt1[i ]==3) y1[i ]=rlnorm(n=1,meanlog=meanl3,sdlog=sdl3)
FullModel <- lm(log(y1) ~ 0 + seq1 + sub1 %in% seq1 + per1 + trt1)
FMDelta <- mean(log(y1)[trt1==1])-mean(log(y1)[trt1==2])
FMdf <- aov(FullModel)$df.residual
FMMSE <- summary(FullModel)$sigma^2/FMdf
FMlo <- 100*exp(FMDelta - qt(1-0.05,FMdf)*sqrt(2*FMMSE/size))
FMhi <- 100*exp(FMDelta + qt(1-0.05,FMdf)*sqrt(2*FMMSE/size))
FMCI <- FMhi - FMlo
FMCVintra <- c(FMCVintra, sqrt(exp(FMMSE)-1))
if ((FMlo>=80) && (FMhi<=125)) FM.be <- FM.be + 1
# do the pruning!
y2 <- y1
length(y2) <- size*2
j <- 0
for (i in 1:size*3) if (trt1[i ] != 3)
{ j <- j+1;
y2[j] <- y1[i ]
}
ReducedModel <- lm(log(y2) ~ 0 + seq2 + sub2 %in% seq2 + per2 + trt2) # EMA?!
RMDelta <- mean(log(y2)[trt2==1])-mean(log(y2)[trt2==2])
RMdf <- aov(ReducedModel)$df.residual
RMMSE <- summary(ReducedModel)$sigma^2/RMdf
RMlo <- 100*exp(RMDelta - qt(1-0.05,RMdf)*sqrt(2*RMMSE/size))
RMhi <- 100*exp(RMDelta + qt(1-0.05,RMdf)*sqrt(2*RMMSE/size))
RMCI <- RMhi - RMlo
RMCVintra <- c(RMCVintra, sqrt(exp(RMMSE)-1))
if ((RMlo>=80) && (RMhi<=125)) RM.be <- RM.be + 1
}
if (RM.be>FM.be){Outcome <- "liberal."}else{Outcome <- "conservative."}
result <- paste(paste(
" Reduced model (EMA: R2 dropped) compared to full model (Williams’ design)\n"),
paste("Full model passed BE: ",
format(100*FM.be/sims,digits=4,nsmall=2,zero.print=TRUE),
"%, CVintra: ",
format(100*median(FMCVintra),digits=2,nsmall=2,
zero.print=TRUE),"%\n"),
paste("Reduced model passed BE: ",
format(100*RM.be/sims,digits=4,nsmall=2,zero.print=TRUE),
"%, CVintra: ",
format(100*median(RMCVintra),digits=2,nsmall=2,
zero.print=TRUE),"%\n"),
paste("Assessment: Reduced model is",Outcome,"\n"),
paste("Based on",sims,"simulated BE studies; n =",size,"each.","\n"))
cat(result)
Results:
T R1 R2 Full BE (CVintra) Red. BE (CVintra)
Sc.1 30 30 30 87.40% (6.17%) 82.22% ( 8.69%) Red. = conservative
Sc.2 30 50 30 81.63% (6.71%) 70.28% (10.31%) Red. = conservative
Sc.3 30 30 50 86.61% (6.65%) 78.43% ( 9.19%) Red. = conservative
I have no idea how to simulate CVintra; CVtotal is not what I really want (to see if reference’s different variances have an influence on the result).
—
Dif-tor heh smusma 🖖🏼 Довге життя Україна!![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Anticonservativism?! ElMaestro 2010-02-06 17:10 [Regulatives / Guidelines]
- Conservativism? Helmut 2011-11-03 21:12
- In hindsight... ElMaestro 2011-11-03 21:43
- In hindsight... Helmut 2011-11-04 01:56
- In hindsight... ElMaestro 2011-11-04 08:41
- rlnorm simulates what? d_labes 2011-11-04 09:40
- Oops.Helmut 2011-11-04 16:05
- Oops. ElMaestro 2011-11-04 16:22
- Simulation of intra-subject variability d_labes 2011-11-07 11:16
- Simulation of intra-subject variability ElMaestro 2011-11-08 11:02
- Simulation of intra-subject variability d_labes 2011-11-07 11:16
- Oops. Oops. d_labes 2011-11-25 13:54
- Another Oops. Helmut 2011-11-25 14:23
- Oops. ElMaestro 2011-11-04 16:22
- Oops.Helmut 2011-11-04 16:05
- In hindsight... Helmut 2011-11-04 01:56
- In hindsight... ElMaestro 2011-11-03 21:43
- Simul Ants questions d_labes 2011-11-04 15:46
- Simul Ants questions ElMaestro 2011-11-04 16:06
- Simul Ants questions Helmut 2011-11-04 16:09
- Liberal Conservatives d_labes 2011-11-08 11:31
- Liberal Conservatives martin 2011-11-08 20:50
- Liberal Conservatives Helmut 2011-11-08 22:56
- intra-subject correlation martin 2011-11-09 09:01
- intra-subject correlation Helmut 2011-11-25 17:16
- intra-subject correlation martin 2011-11-09 09:01
- Liberal Conservatives Helmut 2011-11-08 22:56
- Liberal Conservatives martin 2011-11-08 20:50
- Conservativism? Helmut 2011-11-03 21:12