Sharpen the Jackknife [Bioanalytics]

posted by Helmut Homepage – Vienna, Austria, 2010-11-19 17:19 (5305 d 13:33 ago) – Posting: # 6177
Views: 10,625

Dear D. Labes!

❝ Save your time for nicer things, f.i. NLYW :-D.


Oh, dear! I'm not sure whether my girlfriend would like that - especially the Y in NLYW. :pirate:

❝ Set the call to minimizing the weighted sum of squares in the function to:

fit <- optimize(minfun, c(0.1, 10), x=x, y=y, xv=xstd^2, yv=ystd^2, tol=1.e-8) and look what happens :cool:.


Great! For the archive:
Call:
deming(x = x, y = y, xstd = c(1, 0), ystd = c(1, 0), jackknife = TRUE)

               Coef    se(coef)            z         p
Intercept 0.1857505 0.140423178 123.97018229 0.0000000
Slope     0.9891061 0.005457953  -0.01334144 0.4893563

Intercept (95% CI): -0.1586471 0.5301481
Slope     (95% CI):  0.9758092 1.002403


Code for the plot with the fit and its CI:

df  <- length(x)-2
t   <- qt(1-0.05/2, df=df)
x1  <- seq(min(x), max(x), length.out=250)
CI  <- matrix(nrow=250, ncol=2, byrow=TRUE,
        dimnames=list(NULL, c("CL.lo", "CL.hi")))
for (j in 1:length(x1)) {
  CI[j, 1] <- (fit$coefficient[[1]] - t*sqrt(fit$variance[1, 1])) +
              (fit$coefficient[[2]] - t*sqrt(fit$variance[2, 2]))*x1[j]
  CI[j, 2] <- (fit$coefficient[[1]] + t*sqrt(fit$variance[1, 1])) +
              (fit$coefficient[[2]] + t*sqrt(fit$variance[2, 2]))*x1[j]
}
plot(x, y, main="method comparison", sub="calibrators", xlab="raw",
  ylab="smooth", cex=2, col="red", cex.sub=0.9)
lines(x=range(x), y=fit$coefficient[[1]]+fit$coefficient[[2]]*range(x),
  col="blue", lwd=2)
lines(x=x1, y=CI[, 1], col="blue")
lines(x=x1, y=CI[, 2], col="blue")


[image]

You could also ask whether the smoothed results (y) are within the 95% CI of the fit:
CI <- CI[1:length(x), ] for (j in 1:length(x)) {
  CI[j, 1] <- (fit$coefficient[[1]]-t*sqrt(fit$variance[1,1])) +
              (fit$coefficient[[2]]-t*sqrt(fit$variance[2,2]))*x[j]   CI[j, 2] <- (fit$coefficient[[1]]+t*sqrt(fit$variance[1,1])) +
              (fit$coefficient[[2]]+t*sqrt(fit$variance[2,2]))*x[j] }
CI <- cbind(CI, y)
CI <- as.data.frame(round(CI, 2))
CI <- cbind(CI, CI[, 3] >= CI[, 1] & CI[, 3] <= CI[, 2])
names(CI)[4]<- "within CI?"
print(CI, row.names=FALSE)

  CL.lo  CL.hi      y within CI?
 101.46 104.92 102.97       TRUE
  87.69  90.78  88.58       TRUE
  72.03  74.69  74.37       TRUE
  48.54  50.56  49.79       TRUE
  19.82  21.05  20.13       TRUE
   9.00   9.94   9.58       TRUE
   3.76   4.56   4.21       TRUE
   1.81   2.56   1.96       TRUE

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,424 posts in 4,927 threads, 1,679 registered users;
114 visitors (0 registered, 114 guests [including 11 identified bots]).
Forum time: 07:52 CEST (Europe/Vienna)

If you want to get people to believe
something really, really stupid,
just stick a number on it.    Charles Seife

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5