lme() answer and beyond ... [General Statistics]
Dear Helmut!
Here the results using R's lme().
Code used:
Answer:
Ok the random effects parameters can't directly compared, only via th G matrix.
Seems that the difference in intra-subject variability is absorbed by the G matrix, with no loss in the fit (nearly identical -2*LL).
Quintessence for scABE using the EMA approach:
Confusion
: scABE not proven.
Astonishing enough the 95% upper confidence interval of the linearized scABE criterion
is negative if theta=0.76 (EMA and recommended by Tothfalusi et.al.) and the MOM terms are used, if I calculated right. And this would indicate scABE proven.
Tothfalusi et.al.
Evaluation of Bioequivalence for Highly Variable Drugs with Scaled Average Bioequivalence
Clin. Pharmacokinet. 2009; 48 (11): 725-743
❝ OK, I end up after 7 iterations at:
❝ -2* REML log(likelihood) 251.724
❝ Same result if use the default convergence criterion (10-10),
❝ yours ((10-8), or approach numeric resolution.
Here the results using R's lme().
Code used:
model2 <- lme(log(Cmax) ~ tmt + period + sequence,
random=list(subject=pdSymm(form= ~tmt-1)),
weights=varIdent(form = ~ 1 | tmt),
data=PKparms, method="REML", na.action=na.omit)
summary(model2)
Answer:
Linear mixed-effects model fit by REML
Data: PKparms
AIC BIC logLik
291.654 320.096 -135.827 # -2*LL = 271.654! Seems WNL computes different.
Random effects:
Formula: ~tmt - 1 | subject
Structure: General positive-definite
StdDev Corr
tmtR 0.574772 tmtR
tmtT 0.705001 0.642
Residual 0.431758 # s2=0.186415
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | tmt
Parameter estimates:
R T
1.000000 0.993312 # very interesting: variability of T lower then R.
Fixed effects: log(Cmax) ~ tmt + period + sequence
Value Std.Error DF t-value p-value
(Intercept) 5.60475 0.1867666 86 30.00937 0.0000
tmtT -0.14753 0.1153259 86 -1.27927 0.2042
period 0.08578 0.0534769 86 1.60402 0.1124
sequenceRTR 0.17906 0.2209845 41 0.81027 0.4225
sequenceTRR -0.28646 0.2297086 41 -1.24704 0.2195
Ok the random effects parameters can't directly compared, only via th G matrix.
getVarCov(model2)
Random effects variance covariance matrix
tmtR tmtT
tmtR 0.33036 0.26032 # SAS: 0.3313 0.2581
tmtT 0.26032 0.49703 # 0.2581 0.3596
intervals(model2,which="var-cov",level=0.95)
Error in intervals.lme(model2, which = "var-cov", level = 0.95) :
Cannot get confidence intervals on var-cov components: Non-positive
definite approximate variance-covariance
Seems that the difference in intra-subject variability is absorbed by the G matrix, with no loss in the fit (nearly identical -2*LL).
Quintessence for scABE using the EMA approach:
-- Widened (EMA)
----- 90% CIs ----- acceptance range --
point est. lower upper s2WR lower upper
FDA (MoM) 0.8746 0.7216 1.0605 0.14332 0.7500 1.3334
SAS (FDA) 0.8632 0.7037 1.0498 0.1862 0.7204 1.3881
WNL ? 0.18616 0.7204 1.3881
lme() 0.8628 0.7123 1.0452 0.18642 0.7203 1.3884
Confusion

Astonishing enough the 95% upper confidence interval of the linearized scABE criterion
(µT-µR)2-theta2*sigma2WR = -0.03751
is negative if theta=0.76 (EMA and recommended by Tothfalusi et.al.) and the MOM terms are used, if I calculated right. And this would indicate scABE proven.
Tothfalusi et.al.
Evaluation of Bioequivalence for Highly Variable Drugs with Scaled Average Bioequivalence
Clin. Pharmacokinet. 2009; 48 (11): 725-743
—
Regards,
Detlew
Regards,
Detlew
Complete thread:
- SABE Reference Variability and CI Computation preyes323 2010-07-12 17:12 [General Statistics]
- Dataset Helmut 2010-07-12 17:26
- Dataset preyes323 2010-07-12 18:20
- Data format Helmut 2010-07-12 18:38
- Data format preyes323 2010-07-13 01:16
- SAS and/or Phoenix/WinNonlin-experts around? Helmut 2010-07-13 02:29
- Phoenix/WinNonlin-experts around? d_labes 2010-07-13 12:15
- Phoenix/WinNonlin-experts around? Helmut 2010-07-13 13:42
- Mixed interest d_labes 2010-07-13 15:11
- Mixed interest Helmut 2010-07-13 19:19
- lme() answer and beyond ...d_labes 2010-07-14 10:41
- lme() answer and beyond ... Helmut 2010-07-14 13:47
- AIC, BIC and that all ... d_labes 2010-07-15 12:01
- lme() answer and beyond ... Helmut 2010-07-14 13:47
- lme() answer and beyond ...d_labes 2010-07-14 10:41
- Mixed interest Helmut 2010-07-13 19:19
- Mixed interest d_labes 2010-07-13 15:11
- Phoenix/WinNonlin-experts around? Helmut 2010-07-13 13:42
- Phoenix/WinNonlin-experts around? d_labes 2010-07-13 12:15
- To Err is Human d_labes 2010-07-13 11:51
- To Err is Human, but... Helmut 2010-07-13 13:45
- ... to Arr is Pirate d_labes 2010-07-13 15:47
- Brilliant page!!! ElMaestro 2010-07-14 21:03
- ... to Arr is Pirate d_labes 2010-07-13 15:47
- To Err is Human preyes323 2010-07-14 14:45
- Heads up! Helmut 2010-07-14 15:17
- To Err is Teacher d_labes 2010-07-15 11:05
- To Err is Human preyes323 2010-07-16 02:28
- To Err is Human d_labes 2010-07-16 10:42
- To Err is Human preyes323 2010-07-17 11:14
- Regulatory constants d_labes 2010-07-19 10:00
- To Err is Human preyes323 2010-07-17 11:14
- To Err is Human d_labes 2010-07-16 10:42
- To Err is Human, but... Helmut 2010-07-13 13:45
- Data format ElMaestro 2011-02-06 11:54
- SAS System Viewer Helmut 2011-02-06 13:02
- SAS and/or Phoenix/WinNonlin-experts around? Helmut 2010-07-13 02:29
- Data format preyes323 2010-07-13 01:16
- Data format Helmut 2010-07-12 18:38
- Dataset preyes323 2010-07-12 18:20
- Dataset Helmut 2010-07-12 17:26