Rounding or not to rounding [🇷 for BE/BA]
Dear Helmut and D. Labes,
Sorry about this. I didn't notice that this thread was about bear at the beginning until I saw the edited footnote by Helmut. Thanks you all for all messages here.
Yes. Then I tested bear (v2.5.0, not released yet!) to compare the runs between the pre-transformedmanually Cmax to 3 digits and internally transformed with the model (lnCmax<- lm(log(Cmax) ~ seq + subj:seq + prd + drug , data=TotalData)) as suggested by D. Labes, using a 2x2x2 crossover demo dataset in bear (single-dosed). I got the same results as follows. I think two methods are taking the same values to calculate under R, not manually pre-transformed values. That's why no difference is observed.
- Pre-transformedmanually---
--- internally transformed method ---
Sorry about this. I didn't notice that this thread was about bear at the beginning until I saw the edited footnote by Helmut. Thanks you all for all messages here.
❝ Just discovered a little problem. bear log-transforms raw values and rounds them to three significant digits. That's nasty, [...]
Yes. Then I tested bear (v2.5.0, not released yet!) to compare the runs between the pre-transformed
- Pre-transformed
Statistical analysis (ANOVA(lm))
--------------------------------------------------------------------------
Dependent Variable: lnCmax
Type I SS
Analysis of Variance Table
Response: lnCmax
Df Sum Sq Mean Sq F value Pr(>F)
seq 1 0.000690 0.000690 0.0388 0.8472
prd 1 0.018169 0.018169 1.0205 0.3323
drug 1 0.036238 0.036238 2.0354 0.1792
subj(seq) 12 0.283676 0.023640 1.3278 0.3155
Residuals 12 0.213641 0.017803
Type III SS
Single term deletions
Model:
lnCmax ~ seq + subj:seq + prd + drug
Df Sum of Sq RSS AIC F value Pr(F)
<none> 0.21364 -104.52
prd 1 0.018169 0.23181 -104.23 1.0205 0.3323
drug 1 0.036238 0.24988 -102.13 2.0354 0.1792
subj(seq) 12 0.283676 0.49732 -104.86 1.3278 0.3155
Tests of Hypothesis for SUBJECT(SEQUENCE) as an error term
Error: subj
Df Sum Sq Mean Sq F value Pr(>F)
prd:drug 1 0.00069 0.0006903 0.0292 0.8672
Residuals 12 0.28368 0.0236397
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
prd 1 0.018169 0.018169 1.0205 0.3323
drug 1 0.036238 0.036238 2.0354 0.1792
Residuals 12 0.213641 0.017803
Intra_subj. CV = 100*sqrt(abs(exp(MSResidual)-1)) = 13.4025 %
Inter_subj. CV = 100*sqrt(abs(exp((MSSubject(seq)-MSResidual)/2)-1)) = 5.4059 %
MSResidual = 0.01780339
MSSubject(seq) = 0.0236397
[...]
**************** Classical (Shortest) 90% C.I. for lnCmax ****************
Point_estimate CI90_lower CI90_upper
1 107.460 98.223 117.566
[...]
--- internally transformed method ---
Statistical analysis (ANOVA(lm))
--------------------------------------------------------------------------
Dependent Variable: lnCmax
Type I SS
--- internally transformed method ---
Analysis of Variance Table
Response: log(Cmax)
Df Sum Sq Mean Sq F value Pr(>F)
seq 1 0.000690 0.000690 0.0388 0.8472
prd 1 0.018169 0.018169 1.0205 0.3323
drug 1 0.036238 0.036238 2.0354 0.1792
subj(seq) 12 0.283676 0.023640 1.3278 0.3155
Residuals 12 0.213641 0.017803
Type III SS
Single term deletions
Model:
log(Cmax) ~ seq + subj:seq + prd + drug
Df Sum of Sq RSS AIC F value Pr(F)
<none> 0.21364 -104.52
prd 1 0.018169 0.23181 -104.23 1.0205 0.3323
drug 1 0.036238 0.24988 -102.13 2.0354 0.1792
subj(seq) 12 0.283676 0.49732 -104.86 1.3278 0.3155
Tests of Hypothesis for SUBJECT(SEQUENCE) as an error term
Error: subj
Df Sum Sq Mean Sq F value Pr(>F)
prd:drug 1 0.00069 0.0006903 0.0292 0.8672
Residuals 12 0.28368 0.0236397
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
prd 1 0.018169 0.018169 1.0205 0.3323
drug 1 0.036238 0.036238 2.0354 0.1792
Residuals 12 0.213641 0.017803
Intra_subj. CV = 100*sqrt(abs(exp(MSResidual)-1)) = 13.4025 %
Inter_subj. CV = 100*sqrt(abs(exp((MSSubject(seq)-MSResidual)/2)-1)) = 5.4059 %
MSResidual = 0.01780339
MSSubject(seq) = 0.0236397
[...]
**************** Classical (Shortest) 90% C.I. for lnCmax ****************
Point_estimate CI90_lower CI90_upper
1 107.460 98.223 117.566
[...]
—
All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here
All the best,
-- Yung-jin Lee
bear v2.9.2:- created by Hsin-ya Lee & Yung-jin Lee
Kaohsiung, Taiwan https://www.pkpd168.com/bear
Download link (updated) -> here
Complete thread:
- F value for sequence effect Pakawadee 2010-05-03 11:48 [🇷 for BE/BA]
- F value for sequence effect AA 2010-05-03 13:38
- F value for sequence effect Ohlbe 2010-05-03 14:16
- F value for sequence effect Pakawadee 2010-05-04 03:48
- F value for sequence effect ElMaestro 2010-05-04 08:48
- F value for sequence effect Pakawadee 2010-05-04 12:12
- F value; rounding Helmut 2010-05-04 13:00
- log rounding machine d_labes 2010-05-04 13:35
- Rounding or not to roundingyjlee168 2010-05-04 21:27
- Rounding or not to rounding ElMaestro 2010-05-04 23:23
- Rounding or not to rounding yjlee168 2010-05-05 01:17
- Rounding or not to rounding ElMaestro 2010-05-05 12:15
- Rounding or not to rounding yjlee168 2010-05-05 12:59
- Rounding or not to rounding ElMaestro 2010-05-05 13:15
- Rounding or not to rounding yjlee168 2010-05-05 13:28
- Type III SS sequence effect -revised yjlee168 2010-05-05 23:58
- Type III SS sequence effect -revised ElMaestro 2010-05-06 07:27
- SAS-like Type III SS sequence with bear? yjlee168 2010-06-03 13:04
- Type III SS sequence effect -revised ElMaestro 2010-05-06 07:27
- Rounding or not to rounding ElMaestro 2010-05-05 13:15
- Rounding or not to rounding yjlee168 2010-05-05 12:59
- Rounding or not to rounding ElMaestro 2010-05-05 12:15
- Rounding or not to rounding yjlee168 2010-05-05 01:17
- New dataset? d_labes 2010-05-05 11:40
- New dataset? yjlee168 2010-05-05 12:31
- log to 3 decimals guess work d_labes 2010-05-05 16:00
- log to 3 decimals guess work yjlee168 2010-05-05 20:13
- rounding and presentation of data Helmut 2010-05-05 20:29
- rounding and presentation of data yjlee168 2010-05-05 21:05
- rounding and presentation of data in R martin 2010-05-06 07:53
- Canadian logs d_labes 2010-05-06 10:12
- Canadian logs ElMaestro 2010-05-06 10:21
- Canadian logs Helmut 2010-05-06 14:57
- Canadian lost d_labes 2010-05-06 15:38
- rounding and presentation of data yjlee168 2010-05-05 21:05
- rounding and presentation of data Helmut 2010-05-05 20:29
- log to 3 decimals guess work yjlee168 2010-05-05 20:13
- log to 3 decimals guess work d_labes 2010-05-05 16:00
- New dataset? yjlee168 2010-05-05 12:31
- Rounding or not to rounding ElMaestro 2010-05-04 23:23
- F value for sequence effect ElMaestro 2010-05-04 08:48
- F value for sequence effect Pakawadee 2010-05-04 03:48