PowerTOST: CV in different designs [🇷 for BE/BA]

posted by Helmut Homepage – Vienna, Austria, 2024-02-10 01:30 (98 d 13:23 ago) – Posting: # 23861
Views: 1,300

Hi roman_max,

❝ within this code in PowerTOST

100*CVfromCI(alpha=0.05, lower=0.8450985339, upper=1.104975299, n=c(5,5), design="2x2x4")

❝ if design is "parallel" it is a CVtotal? Am I right?

Yes, you are.

For the record:
  1. Any replicate design: \(\small{CV_\text{intra}}\), assuming homoscedasticity (\(\small{s_\text{wT}^2\equiv s_\text{wR}^2}\)).
  2. Any crossover and a paired design: \(\small{CV_\text{intra}}\).
  3. Parallel design: \(\small{CV_\text{total}}\), assuming homoscedasticity (\(\small{s_\text{T}^2\equiv s_\text{R}^2}\)).
Note that the \(\small{s^2}\) components in #1 and #3 cannot be calculated from the confidence interval. You need the raw data.

library(PowerTOST)
CI      <- c(0.85, 1 / 0.85)
n       <- 24
designs <- known.designs()[c(1, 13, 3:6, 8:9, 12, 7, 10:11), c(2:3, 9)]
res     <- data.frame(design = designs$design, name = designs$name,
                      n = rep(n, nrow(designs)), df = designs$df,
                      lower = CI[1], upper = CI[2], CV = NA,
                      type = c("total", rep("intra", nrow(designs) - 1)))
for (j in 1:nrow(designs)) {
  res$CV[j] <- sprintf("%.2f%%", 100 * CI2CV(lower = res$lower[j],
                                             upper = res$upper[j], n = n,
                                             design = res$design[j]))
}
print(res, row.names = FALSE, right = FALSE)

 design   name                        n  df    lower upper    CV     type
 parallel 2 parallel groups           24 n-2   0.85  1.176471 23.50% total
 paired   paired means                24 n-1   0.85  1.176471 33.75% intra
 2x2x2    2x2x2 crossover             24 n-2   0.85  1.176471 33.69% intra
 3x3      3x3 crossover               24 2*n-4 0.85  1.176471 34.47% intra
 3x6x3    3x6x3 crossover             24 2*n-4 0.85  1.176471 34.47% intra
 4x4      4x4 crossover               24 3*n-6 0.85  1.176471 34.73% intra
 2x2x4    2x2x4 replicate crossover   24 3*n-4 0.85  1.176471 50.60% intra
 2x4x4    2x4x4 replicate crossover   24 3*n-4 0.85  1.176471 50.60% intra
 2x2x2r   Liu's 2x2x2 repeated x-over 24 3*n-2 0.85  1.176471 50.62% intra
 2x2x3    2x2x3 replicate crossover   24 2*n-3 0.85  1.176471 40.20% intra
 2x3x3    partial replicate (2x3x3)   24 2*n-3 0.85  1.176471 40.20% intra
 2x4x2    Balaam's (2x4x2)            24 n-2   0.85  1.176471 16.50% intra


You can calculate \(\small{CV_\text{wR}}\) from the upper expanded limit (irrespective of the design and sample size):

U <- 1.4319
cat(sprintf("%.2f%%", 100 * U2CVwR(U)), "\n")
50.00%


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,029 posts in 4,834 threads, 1,641 registered users;
37 visitors (0 registered, 37 guests [including 7 identified bots]).
Forum time: 15:54 CEST (Europe/Vienna)

The most erroneous stories are those we think we know best–
and therefore never scrutinize or question.    Stephen Jay Gould

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5