## PowerTOST: CV in different designs [🇷 for BE/BA]

Hi roman_max,

❝ within this code in PowerTOST

100*CVfromCI(alpha=0.05, lower=0.8450985339, upper=1.104975299, n=c(5,5), design="2x2x4")

❝ if design is "parallel" it is a CVtotal? Am I right?

Yes, you are.

For the record:
1. Any replicate design: $$\small{CV_\text{intra}}$$, assuming homoscedasticity ($$\small{s_\text{wT}^2\equiv s_\text{wR}^2}$$).
2. Any crossover and a paired design: $$\small{CV_\text{intra}}$$.
3. Parallel design: $$\small{CV_\text{total}}$$, assuming homoscedasticity ($$\small{s_\text{T}^2\equiv s_\text{R}^2}$$).
Note that the $$\small{s^2}$$ components in #1 and #3 cannot be calculated from the confidence interval. You need the raw data.

library(PowerTOST) CI      <- c(0.85, 1 / 0.85) n       <- 24 designs <- known.designs()[c(1, 13, 3:6, 8:9, 12, 7, 10:11), c(2:3, 9)] res     <- data.frame(design = designs$design, name = designs$name,                       n = rep(n, nrow(designs)), df = designs$df, lower = CI[1], upper = CI[2], CV = NA, type = c("total", rep("intra", nrow(designs) - 1))) for (j in 1:nrow(designs)) { res$CV[j] <- sprintf("%.2f%%", 100 * CI2CV(lower = res$lower[j], upper = res$upper[j], n = n,                                              design = res\$design[j])) } print(res, row.names = FALSE, right = FALSE)  design   name                        n  df    lower upper    CV     type  parallel 2 parallel groups           24 n-2   0.85  1.176471 23.50% total  paired   paired means                24 n-1   0.85  1.176471 33.75% intra  2x2x2    2x2x2 crossover             24 n-2   0.85  1.176471 33.69% intra  3x3      3x3 crossover               24 2*n-4 0.85  1.176471 34.47% intra  3x6x3    3x6x3 crossover             24 2*n-4 0.85  1.176471 34.47% intra  4x4      4x4 crossover               24 3*n-6 0.85  1.176471 34.73% intra  2x2x4    2x2x4 replicate crossover   24 3*n-4 0.85  1.176471 50.60% intra  2x4x4    2x4x4 replicate crossover   24 3*n-4 0.85  1.176471 50.60% intra  2x2x2r   Liu's 2x2x2 repeated x-over 24 3*n-2 0.85  1.176471 50.62% intra  2x2x3    2x2x3 replicate crossover   24 2*n-3 0.85  1.176471 40.20% intra  2x3x3    partial replicate (2x3x3)   24 2*n-3 0.85  1.176471 40.20% intra  2x4x2    Balaam's (2x4x2)            24 n-2   0.85  1.176471 16.50% intra

You can calculate $$\small{CV_\text{wR}}$$ from the upper expanded limit (irrespective of the design and sample size):

U <- 1.4319 cat(sprintf("%.2f%%", 100 * U2CVwR(U)), "\n") 50.00%

Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

### Complete thread:

Admin contact
23,224 posts in 4,878 threads, 1,654 registered users;
33 visitors (0 registered, 33 guests [including 4 identified bots]).
Forum time: 20:32 CEST (Europe/Vienna)

One of the symptoms of an approaching nervous breakdown
is the belief that one’s work is terribly important.    Bertrand Russell

The Bioequivalence and Bioavailability Forum is hosted by
Ing. Helmut Schütz