ABEL vs ABE, randomization [🇷 for BE/BA]

posted by Helmut Homepage – Vienna, Austria, 2022-06-04 17:11 (680 d 22:24 ago) – Posting: # 23042
Views: 1,350

Hi Bebac user,

❝ For a drug that has CV = 25%, we need to design a full replicated study


Why? See also this article.
CV 25% of what? Unusual that Cmax and AUC have the same one. If your authority accepts reference-scaling for Cmax, generally AUC drives the sample size because you have to use conventional ABE for it.

❝ To estimate the sample size, which one is the right to use in R

❝ SampleN.tost OR sampleN.scabel??


None would work. [image] is case-sensitive. You are interested in sampleN.TOST() and sampleN.scABEL().

If really both metrics have 25% (please check), chances are pretty low that ABEL can be applied (only if CVwR > 30%):

library(PowerTOST)
sampleN.TOST(CV = 0.25, design = "2x2x4")

+++++++++++ Equivalence test - TOST +++++++++++
            Sample size estimation
-----------------------------------------------
Study design: 2x2x4 (4 period full replicate)
log-transformed data (multiplicative model)

alpha = 0.05, target power = 0.8
BE margins = 0.8 ... 1.25
True ratio = 0.95,  CV = 0.25

Sample size (total)
 n     power
14   0.813985


sampleN.scABEL(CV = 0.25, theta0 = 0.95, design = "2x2x4")

+++++++++++ scaled (widened) ABEL +++++++++++
            Sample size estimation
   (simulation based on ANOVA evaluation)
---------------------------------------------
Study design: 2x2x4 (4 period full replicate)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.25; CVw(R) = 0.25
True ratio = 0.95
ABE limits / PE constraint = 0.8 ... 1.25
EMA regulatory settings
- CVswitch            = 0.3
- cap on scABEL if CVw(R) > 0.5
- regulatory constant = 0.76
- pe constraint applied

Sample size search
 n     power
12   0.7659
14   0.8266


Therefore, you would need the same sample size, though you would achieve a slightly higher power with ABEL.

❝ I am using a RandomizBE to make randomization but I want to divide them into period 1, period 2 and so on. How?


Extract the treatment from the sequence and create additional columns:

library(randomizeBE)
n       <- 14
seqs    <- c("TRTR", "RTRT")   # any crossover or replicate design
pers    <- nchar(seqs)[1]      # number of periods
periods <- paste0("p", 1:pers) # column names
random  <- RL4(nsubj = n, seqs = seqs, randctrl = TRUE)
random$rl[ , periods] <- ""    # empty period columns
for (i in 1:pers) {            # extract treatment / period
  random$rl[i + 3] <- substring(random$rl$sequence, i, i)
}
print(random)

Randomization table          created: 2022-06-04 15:32:05
(seed: 1892562 blocksize: 4 4 4 2 )

 subject seqno sequence p1 p2 p3 p4
       1     2     RTRT  R  T  R  T
       2     1     TRTR  T  R  T  R
       3     2     RTRT  R  T  R  T
       4     1     TRTR  T  R  T  R
       5     2     RTRT  R  T  R  T
       6     1     TRTR  T  R  T  R
       7     2     RTRT  R  T  R  T
       8     1     TRTR  T  R  T  R
       9     2     RTRT  R  T  R  T
      10     2     RTRT  R  T  R  T
      11     1     TRTR  T  R  T  R
      12     1     TRTR  T  R  T  R
      13     1     TRTR  T  R  T  R
      14     2     RTRT  R  T  R  T


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
22,983 posts in 4,822 threads, 1,648 registered users;
29 visitors (0 registered, 29 guests [including 3 identified bots]).
Forum time: 15:35 CEST (Europe/Vienna)

Complex, statistically improbable things are by their nature
more difficult to explain than
simple, statistically probable things.    Richard Dawkins

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5