PowerTOST: sampleN.NTID() [Power / Sample Size]

posted by pharm07 – India, 2022-05-18 07:18 (939 d 05:15 ago) – Posting: # 22995
Views: 3,341

Hi Helmut,

❝ Although you could give values of theta1 and theta2, for the FDA keep the defaults of 0.8 and 1.25 (i.e., don’t specify anything): Additionally to passing RSABE and the variance-comparison you must pass conventional ABE.


OK. Noted.

❝ More examples are given there.


OK. I referred these examples.

❝ See the two supportive functions in the section about dropouts in the named article.


Ok, I have pasted one example which i seems to be work upon.

❝ That’s possible if you specify a low or high theta0.


OK.

❝ Yes, you are not alone.

:ponder:

❝ I can’t till you post an example which you consider problematic.


Please see below example,
Note : CV is not in scalar form.'

sampleN.NTID(CV = c(0.045,0.07), theta0 = 0.95, targetpower = 0.9)

+++++++++++ FDA method for NTIDs ++++++++++++
           Sample size estimation
---------------------------------------------
Study design:  2x2x4 (TRTR|RTRT)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.9
CVw(T) = 0.045, CVw(R) = 0.07
True ratio     = 0.95
ABE limits     = 0.8 ... 1.25
Implied scABEL = 0.9290 ... 1.0764
Regulatory settings: FDA
- Regulatory const. = 1.053605
- 'CVcap'           = 0.2142

Sample size search
 n     power
92   0.875810
94   0.882090
96   0.888810
98   0.894060
100   0.898510
102   0.903540


# with 30% DO rate,

# as CV was specified as Vector,
# is following steps right?
balance <- function(n, n.seq) {
  # Round up to obtain balanced sequences
  return(as.integer(n.seq * (n %/% n.seq + as.logical(n %% n.seq))))
}
nadj <- function(n, do.rate, n.seq) {
  # Round up to compensate for anticipated dropout-rate
  return(as.integer(balance(n / (1 - do.rate), n.seq)))
}
CV      <- 0.045               # Assumed CV # how to specify vector CV here?
do.rate <- 0.30                # Anticipated dropout-rate 30%
n       <- sampleN.NTID(CV = CV, print = FALSE, details = FALSE)[["Sample size"]]
dosed   <- nadj(n, do.rate, 2) # Adjust the sample size
df      <- data.frame(dosed = dosed, eligible = dosed:(n - 2))
for (j in 1:nrow(df)) {
  df$dropouts[j] <- sprintf("%.1f%%", 100 * (1 - df$eligible[j] / df$dosed[j]))
  df$power[j]    <- suppressMessages( # We know that some are unbalanced
                      power.NTID(CV = CV, n = df$eligible[j]))
}
print(df, row.names = FALSE)
dosed eligible dropouts   power
   58       58     0.0% 0.92040
   58       57     1.7% 0.91575
   58       56     3.4% 0.91254
   58       55     5.2% 0.90722
   58       54     6.9% 0.90364
   58       53     8.6% 0.89761
   58       52    10.3% 0.89257
   58       51    12.1% 0.88767
   58       50    13.8% 0.88215
   58       49    15.5% 0.87672
   58       48    17.2% 0.86952
   58       47    19.0% 0.86376
   58       46    20.7% 0.85690
   58       45    22.4% 0.84922
   58       44    24.1% 0.84310
   58       43    25.9% 0.83486
   58       42    27.6% 0.82810
   58       41    29.3% 0.81915
   58       40    31.0% 0.81109
   58       39    32.8% 0.80105
   58       38    34.5% 0.79410


Kindly guide me with this example, i want to check whether i am making a mistake or not.:confused:

Regards,
pharm07

Complete thread:

UA Flag
Activity
 Admin contact
23,336 posts in 4,902 threads, 1,666 registered users;
68 visitors (1 registered, 67 guests [including 6 identified bots]).
Forum time: 11:34 CET (Europe/Vienna)

Biostatistician. One who has neither the intellect for mathematics
nor the commitment for medicine but likes to dabble in both.    Stephen Senn

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5