Adjusting weight to reflect group differences in Model [General Sta­tis­tics]

posted by Helmut Homepage – Vienna, Austria, 2022-03-30 13:07 (895 d 06:17 ago) – Posting: # 22886
Views: 2,416

Hi Divyen & Kotu,

❝ As per EMA […]



@Divyen: You are absolutely right when it comes to designing a study.

@Kotu: Were you interested in what to do when Murphy’s law hit and it turned out that groups of eligible subjects differed by a great extent? If yes:

❝ In general, it is recommended to have balanced between treatment arms.


Correct – even in a crossover. It is a common misconception that period effects mean out because T and R are affected to the same degree. That’s not correct for unbalanced sequences. However, unless the degree if imbalance is extreme, the bias is small.


Edit: The published Two-Stage-Design methods are also correct in the strict sense for balanced sequences only. At the end an [image]-script where you can try to counteract imbalance by intentionally allocate subjects in the second stage in such a way that in the pooled analysis sequences are as balanced as possible.

Example: Potvin ‘Method B’ (default), 24 subjects dosed in the first stage, 12 eligible in sequence RT and 10 in sequence TR (dropout-rate ≈8.3%), CV 25%, exact sample size re-estimation (default) taking the stage-term in the pooled analysis into account.

TSD(n1 = 24, n1.1 = 12, n1.2 = 10, CV = 25)

 TSD-method: 1 (α = 0.0294, GMR = 95%, power = 80%)
 Sample size re-estimation: exact
 ──────────────────────────────────────────────────
 Stage 1
 ──────────────────────────────────────────────────
 Randomized/dosed subjects             : 24
 Eligible subjects (drop-outs)         : 22 (2)
 Eligible subjects in sequences RT|TR  : 12|10
 Allocation ratio RT/TR                : 1:0.8333
 Drop-out rate                         : 8.333%
 ──────────────────────────────────────────────────
 Interim analysis
 ──────────────────────────────────────────────────
 Relevant PK metrics’ maximum CV       : 25%
 Estimated total sample size           : 34
 ──────────────────────────────────────────────────
 Stage 2
 ──────────────────────────────────────────────────
 Preliminary sample size               : 12
 Expected drop-out rate                : 8.333%
 Final sample size (adj. for drop-outs): 14
 Randomized subjects in sequences RT|TR: 6|8
 Expected eligible subj. in seq. RT|TR : 6|7
 Allocation ratio RT/TR                : 1:1.167
 ──────────────────────────────────────────────────
 Pooled data set
 ──────────────────────────────────────────────────
 Expected eligible subjects            : 35
 Expected eligible subj. in seq. RT|TR : 18|17
 Allocation ratio RT/TR                : 1:0.9444 (imbalanced)


Estimated n2 12. Assuming that we will see the same dropout-rate like in the first stage, adjusted n2 14. In­stead of dosing seven subjects / sequence, we dose six in sequence RT and eight in sequence TR. If the drop­out-rate is realized, we get an allocation-ratio of 1:0.9444, which is not that bad.


library(Power2Stage)
TSD <- function(method1 = 1, method2 = 1, n1, n1.1, n1.2, CV, do.2) {
  up2even <- function(n) {    # get balanced sequences
    return(as.integer(2 * (n %/% 2 + as.logical(n %% 2))))
  }
  nadj <- function(n, do.r) { # adjust for dropout-rate
    return(as.integer(up2even(n / (1 - do.r))))
  }
  n1.e   <- n1.1 + n1.2           # stage 1: eligible subjects
  n1.ar  <- n1.2 / n1.1           # stage 1: sequence allocation ratio
  do.r   <- abs((n1.e - n1) / n1) # stage 1: drop-out rate
  if(!missing(do.2)) do.2 <- do.2 / 100 # anticipated drop-out rate stage 2
  if(missing(do.2)) do.2  <- do.r       # apply 1st if not given
  CV     <- CV / 100
  if (method1 == 1) {adj <- 0.0294; GMR <- 0.95; pwr <- 0.8}
  if (method1 == 2) {adj <- 0.0280; GMR <- 0.90; pwr <- 0.8}
  if (method1 == 3) {adj <- 0.0284; GMR <- 0.95; pwr <- 0.9}
  if (method1 == 4) {adj <- 0.0274; GMR <- 0.95; pwr <- 0.9}
  if (method1 == 5) {adj <- 0.0269; GMR <- 0.90; pwr <- 0.9}
  if (method2 == 1) me <- "exact"
  if (method2 == 2) me <- "nct"
  if (method2 == 3) me <- "shifted"
  n2.p   <- sampleN2.TOST(alpha = adj, CV = CV, n1 = n1.e, theta0 = GMR,
                          targetpower = pwr, method = me)[["Sample size"]]
  nt     <- n1.e + n2.p             # preliminary total sample size
  n2.1   <- nadj(nt/2-n1.1, do.2)   # adjust for drop-outs
  n2.2   <- nadj(nt/2-n1.2, do.2)   # adjust for drop-outs
  n2     <- n2.1+n2.2               # dosed in stage 2
  n2.1e  <- round(n2.1*(1-do.2), 0) # stage 2: expected elig. subjects in seq. 1
  n2.2e  <- round(n2.2*(1-do.2), 0) # stage 2: expected elig. subjects in seq. 2
  n2.e   <- n2.1e+n2.2e             # stage 2: expected elig. subjects
  n2.ar  <- n2.2e/n2.1e             # stage 2: sequence allocation ratio
  ar     <- (n1.2+n2.2e)/(n1.1+n2.1e) # pooled data’s allocation ratio
  ifelse(ar == 1, bal <- "(balanced)", bal <- "(imbalanced)")
  sep    <- paste(paste0(rep("\u2500", 50), collapse=""), "\n")
  if(method2 > 1) me <- c(me, "t-distribution")
  cat("\n TSD-method:", method1,
  paste0("(\u03b1 = ", adj, ", GMR = ", 100*GMR, "%, power = ", 100*pwr, "%)\n"),
  "Sample size re-estimation:", me, "\n", sep,
  "Stage 1\n", sep,
  "Randomized/dosed subjects             :", n1, "\n",
  "Eligible subjects (drop-outs)         :", n1.e, paste0("(", n1-n1.e,")"), "\n",
  "Eligible subjects in sequences RT|TR  :", paste0(n1.1, "|", n1.2), "\n",
  "Allocation ratio RT/TR                :", paste0("1:", signif(n1.ar, 4)), "\n",
  "Drop-out rate                         :", paste0(signif(100*do.r, 4), "%\n"), sep,
  "Interim analysis\n", sep,
  "Relevant PK metrics’ maximum CV       :", paste0(signif(100*CV, 4), "%\n"),
  "Estimated total sample size           :", as.numeric(nt), "\n", sep,
  "Stage 2\n", sep,
  "Preliminary sample size               :", n2.p, "\n",
  "Expected drop-out rate                :", paste0(signif(100*do.2, 4),"%\n"),
  "Final sample size (adj. for drop-outs):", n2, "\n",
  "Randomized subjects in sequences RT|TR:", paste0(n2.1, "|", n2.2), "\n",
  "Expected eligible subj. in seq. RT|TR :", paste0(n2.1e, "|", n2.2e), "\n",
  "Allocation ratio RT/TR                :", paste0("1:", signif(n2.ar, 4)), "\n", sep,
  "Pooled data set\n", sep,
  "Expected eligible subjects            :", n1.e+n2.e, "\n",
  "Expected eligible subj. in seq. RT|TR :", paste0(n1.1+n2.1e, "|", n1.2+n2.2e), "\n",
  "Allocation ratio RT/TR                :", paste0("1:", signif(ar, 4)), bal, "\n\n")
}

method1 <- 1 # select from TSD-Methods
###################################################
#                                     GMR% power% #
# 1 Potvin et al. (2008) Methods B/C:  95    80   #
# 2 Montague et al. (2011) Method D:   90    80   #
# 3 Fuglsang (2013) Method B:          95    90   #
# 4 Fuglsang (2013) Method C1/D1:      95    90   #
# 5 Fuglsang (2013) Method C2/D2:      90    90   #
###################################################

method2 <- 1 # select from power-estimation Methods
#######################################
# 3 shifted t-distribution:    good   #
# 2 noncentral t-distribution: better #
# 1 exact (Owen’s Q-function): best   #
#######################################


Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,223 posts in 4,877 threads, 1,656 registered users;
33 visitors (0 registered, 33 guests [including 4 identified bots]).
Forum time: 19:24 CEST (Europe/Vienna)

Explanations exist; they have existed for all time;
there is always an easy solution to every human problem –
neat, plausible and wrong.    H. L. Mencken

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5