Wrong formula for CV [Regulatives / Guidelines]
$$\small{CV_\textrm{intra}=100\sqrt{MSE}}\tag{1}$$$$\small{CV_\textrm{intra}=100\sqrt{\exp(MSE)-1}}\tag{2}$$
\(\small{(1)}\) was given in Health Canadas’ guidances of 1992 and 1996. \(\small{(1)}\) is only approximate for relatively small variances. The bias is always negative and hence, when used in sample size estimations misleading (studies will be underpowered).
library(PowerTOST)
CV <- seq(0.05, 0.5, 0.05)
mse <- CV2mse(CV)
CV.appr <- sqrt(CV2mse(CV))
bias <- sprintf("%+.2f%%", 100 * (CV.appr - CV) / CV)
# sample size for T/R-ratio 0.95, at least 80% power
res <- data.frame(CV = CV, CV.appr = CV.appr, bias = bias,
n = NA_integer_, power = NA_real_,
n.appr = NA_integer_, power.appr = NA_real_)
for (j in seq_along(CV)) {
res$n[j] <- sampleN.TOST(CV = CV[j], print = FALSE)[["Sample size"]]
res$n.appr[j] <- sampleN.TOST(CV = CV.appr[j], print = FALSE)[["Sample size"]]
# minimum acc. to GLs
if (res$n[j] < 12) res$n[j] <- 12
if (res$n.appr[j] < 12) res$n.appr[j] <- 12
res$power[j] <- round(power.TOST(CV = CV[j], n = res$n[j]), 5)
res$power.appr[j] <- round(power.TOST(CV = CV[j], n = res$n.appr[j]), 5)
}
CV.appr <- round(CV.appr, 5)
print(res, row.names = FALSE)
CV CV.appr bias n power n.appr power.appr
0.05 0.04996879 -0.06% 12 1.00000 12 1.00000
0.10 0.09975135 -0.25% 12 0.98835 12 0.98835
0.15 0.14916638 -0.56% 12 0.83052 12 0.83052
0.20 0.19804220 -0.98% 20 0.83468 20 0.83468
0.25 0.24622068 -1.51% 28 0.80744 28 0.80744
0.30 0.29356038 -2.15% 40 0.81585 38 0.79533
0.35 0.33993873 -2.87% 52 0.80747 50 0.79168
0.40 0.38525317 -3.69% 66 0.80525 62 0.77978
0.45 0.42942138 -4.57% 82 0.80691 76 0.77602
0.50 0.47238073 -5.52% 98 0.80322 88 0.75845
It took Health Canada until 2018 to give the correct \(\small{(2)}\). Never trust in guidances.

Dif-tor heh smusma 🖖🏼 Довге життя Україна!
![[image]](https://static.bebac.at/pics/Blue_and_yellow_ribbon_UA.png)
Helmut Schütz
![[image]](https://static.bebac.at/img/CC by.png)
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Corrections for Potency Shatha 2022-03-20 14:51 [Regulatives / Guidelines]