Ratio/product of two lognormals [NCA / SHAM]
❝ ❝ ❝ what do you think is a reasonable assumption about the distribution of the metric AUC*k?
❝ ❝ Since both are lognormal, their ratio should be lognormal as well. I trust here Martin; will meet him in the evening and ask again.
Answer: The difference of two normal distributions is normal distributed. The ratio and product of two lognormal distributions are lognormal distributed.
Furthermore, the unit of AUC·k is mass/volume.
n <- 2501
x <- seq(0.01, 2.5, length.out = n)
a <- dlnorm(x = x, meanlog = log(1), sdlog = sqrt(log(0.15^2 + 1)))
b <- dlnorm(x = x, meanlog = log(0.95), sdlog = sqrt(log(0.30^2 + 1)))
c <- a / b
d <- a * b
clr <- c("#FF808080", "#8080FF80", "#FF80FF80")
dev.new(width = 4.5, height = 4.5, record = TRUE)
op <- par(no.readonly = TRUE)
par(mar = c(4, 0, 0, 0), cex.axis = 0.9)
plot(x = x, y = a, type = "n", xlab = expression(mu[T]/mu[R]),
ylab = "", ylim = range(a, b, c), axes = FALSE)
axis(1)
polygon(x = c(x, rev(x)), y = c(rep(0, n), rev(a)), col = clr[1], border = NA)
polygon(x = c(x, rev(x)), y = c(rep(0, n), rev(b)), col = clr[2], border = NA)
polygon(x = c(x, rev(x)), y = c(rep(0, n), rev(c)), col = clr[3], border = NA)
legend("topright", lwd = 5, seg.len = 2, col = clr, cex = 0.8,
legend = c(expression(italic(a)*" = dlnorm(log(1), CV 0.15)"),
expression(italic(b)*" = dlnorm(log(0.95), CV 0.30)"),
expression(italic(c==a/b))))
plot(x = x, y = a, type = "n", xlab = expression(mu[T]/mu[R]),
ylab = "", ylim = range(a, b, d), axes = FALSE)
axis(1)
polygon(x = c(x, rev(x)), y = c(rep(0, n), rev(a)), col = clr[1], border = NA)
polygon(x = c(x, rev(x)), y = c(rep(0, n), rev(b)), col = clr[2], border = NA)
polygon(x = c(x, rev(x)), y = c(rep(0, n), rev(d)), col = clr[3], border = NA)
legend("topright", lwd = 5, seg.len = 2, col = clr, cex = 0.8,
legend = c(expression(italic(a)*" = dlnorm(log(1), CV 0.15)"),
expression(italic(b)*" = dlnorm(log(0.95), CV 0.30)"),
expression(italic(d==a %.% b))))
par(op)
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- AUC · k for variable inter-occasion CL Helmut 2021-09-30 23:31 [NCA / SHAM]
- AUC · k for variable inter-occasion CL PharmCat 2021-10-01 00:15
- Changing the regulations: Hope dies last. Helmut 2021-10-01 11:18
- AUC * k d_labes 2021-10-01 13:52
- AUC * k Helmut 2021-10-01 17:01
- AUC * k d_labes 2021-10-02 10:55
- Ratio/product of two lognormalsHelmut 2021-10-03 20:29
- Not for HVDPs? Helmut 2021-10-04 12:05
- what about recyclers? mittyri 2021-10-04 14:22
- Oh dear! Helmut 2021-10-04 16:10
- what about recyclers? mittyri 2021-10-04 14:22
- AUC * k d_labes 2021-10-02 10:55
- AUC * k Helmut 2021-10-01 17:01
- Changing the regulations: Hope dies last. PharmCat 2021-10-01 18:48
- AUC * k d_labes 2021-10-01 13:52
- Changing the regulations: Hope dies last. Helmut 2021-10-01 11:18
- AUC · k for variable inter-occasion CL PharmCat 2021-10-01 00:15