Very nice! [Regulatives / Guidelines]
Hi ElMaestro,
THX, I did.
Define relevant.
\(\small{\delta_{\,estimate-true}\small}\) or – likely better – \(\small{|\,\textrm{RE}\,(\%)\,|=|\,100(estimate-true)/true\,|}\) is commonly used.
Example for \(\small{\sigma_\textrm{wR}^2=0.2025}\) of the paper’s Table 2:
$$\textbf{Table I:}\;\textrm{Comparison of models' estimates}$$$$\small{\begin{array}{cccccccl}
\hline
\text{Scenario} & \hat\sigma_\textrm{wR,REML}^2 & \delta & |\,RE\,(\%)\,| & \hat\sigma_\textrm{wR,Lin.model}^2 & \delta & |\,RE\,(\%)\,| & \textrm{Comparison of }|\,RE\,(\%)\,|\\
\hline
1 & 0.2023 & -0.0002 & 0.0988 & 0.2024 & -0.0001 & 0.0494 & \text{Linear model "better"} \\
2 & 0.2036 & +0.0011 & 0.5432 & 0.2036 & +0.0011 & 0.5432 & \text{Equal} \\
3 & 0.2014 & -0.0011 & 0.5432 & 0.2013 & -0.0012 & 0.5926 & \text{REML "better"} \\
4 & 0.2022 & -0.0003 & 0.1481 & 0.2023 & -0.0002 & 0.0988 & \text{Linear model "better"} \\
5 & 0.2025 & \pm 0.0000 & 0.0000 & 0.2024 & -0.0001 & 0.0494 & \text{REML "better"} \\
6 & 0.2027 & +0.0002 & 0.0988 & 0.2027 & +0.0002 & 0.0988 & \text{Equal} \\
\hline
\end{array}}$$There is no clear winner. IMHO, it boils down to the question which of the scenarios is most likely occurring in practice. No idea.
We can look at the expanded limits \(\small{\left\{L\,,U\right\}}=100\exp(\mp0.76\,\hat{\sigma}_\textrm{wR})\) and the back-calculated ‘clinically not relevant difference’ \(\small{\Delta^{\star}=100-L}\) as well:
$$\textbf{Table II:}\;\textrm{Comparison of ABEL}$$$$\small{\begin{array}{ccccccc}
\hline
\text{Scenario} & \left\{\textit{L},\,\textit{U}\right\}_\textrm{REML} & \Delta^{\star} & \left\{\textit{L},\,\textit{U}\right\}_\textrm{LM} & \Delta^{\star} & \left\{\textit{L}-\textit{U}\right\} & \Delta^{\star} \\
\hline
1 & 71.05,\,140.75 & 28.95\% & 71.04,\,140.76 & 28.96\% & \textrm{REML}>\textrm{LM} & \textrm{REML}<\textrm{LM}\\
2 & 70.97,\,140.91 & 29.03\% & 70.97,\,140.91 & 29.03\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
3 & 70.10,\,140.65 & 28.90\% & 71.11,\,140.63 & 28.89\% & \textrm{REML}>\textrm{LM} & \textrm{REML}>\textrm{LM}\\
4 & 71.05,\,140.74 & 28.95\% & 71.05,\,140.75 & 28.95\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
5 & 71.03,\,140.78 & 28.97\% & 71.04,\,140.76 & 28.96\% & \textrm{REML}>\textrm{LM} & \textrm{REML}>\textrm{LM}\\
6 & 71.02,\,140.80 & 28.98\% & 71.02,\,140.80 & 28.98\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
\hline
\end{array}}$$A sponsor would prefer \(\small{\left\{L\,,U\right\}}\) as wide as possible. Hence, \(\small{\textrm{REML}}\) is the way to go. From the patient’s – and therefore, regulatory? – perspective it is obviously the other way ’round \(\small{(\Delta^{\star}}\) as small as possible). Bonus question: What about the Type I Error? Of course, discussed in the paper…
Understandable. However, even if not practically relevant I prefer the “better” one. The paper’s Table 4 is interesting.
❝ here's a paper that discusses the funky issue with fixed effects versus random effects.
❝ Enjoy.
THX, I did.
❝ In particular, who can come up with a quantitative relevant measure of the difference any estimator makes if you have two model alternatives?
Define relevant.
❝ One thing is of course to judge if estimate A is closer to the true value that estimator B, or if its variance is smaller, …
\(\small{\delta_{\,estimate-true}\small}\) or – likely better – \(\small{|\,\textrm{RE}\,(\%)\,|=|\,100(estimate-true)/true\,|}\) is commonly used.
Example for \(\small{\sigma_\textrm{wR}^2=0.2025}\) of the paper’s Table 2:
$$\textbf{Table I:}\;\textrm{Comparison of models' estimates}$$$$\small{\begin{array}{cccccccl}
\hline
\text{Scenario} & \hat\sigma_\textrm{wR,REML}^2 & \delta & |\,RE\,(\%)\,| & \hat\sigma_\textrm{wR,Lin.model}^2 & \delta & |\,RE\,(\%)\,| & \textrm{Comparison of }|\,RE\,(\%)\,|\\
\hline
1 & 0.2023 & -0.0002 & 0.0988 & 0.2024 & -0.0001 & 0.0494 & \text{Linear model "better"} \\
2 & 0.2036 & +0.0011 & 0.5432 & 0.2036 & +0.0011 & 0.5432 & \text{Equal} \\
3 & 0.2014 & -0.0011 & 0.5432 & 0.2013 & -0.0012 & 0.5926 & \text{REML "better"} \\
4 & 0.2022 & -0.0003 & 0.1481 & 0.2023 & -0.0002 & 0.0988 & \text{Linear model "better"} \\
5 & 0.2025 & \pm 0.0000 & 0.0000 & 0.2024 & -0.0001 & 0.0494 & \text{REML "better"} \\
6 & 0.2027 & +0.0002 & 0.0988 & 0.2027 & +0.0002 & 0.0988 & \text{Equal} \\
\hline
\end{array}}$$There is no clear winner. IMHO, it boils down to the question which of the scenarios is most likely occurring in practice. No idea.
We can look at the expanded limits \(\small{\left\{L\,,U\right\}}=100\exp(\mp0.76\,\hat{\sigma}_\textrm{wR})\) and the back-calculated ‘clinically not relevant difference’ \(\small{\Delta^{\star}=100-L}\) as well:
$$\textbf{Table II:}\;\textrm{Comparison of ABEL}$$$$\small{\begin{array}{ccccccc}
\hline
\text{Scenario} & \left\{\textit{L},\,\textit{U}\right\}_\textrm{REML} & \Delta^{\star} & \left\{\textit{L},\,\textit{U}\right\}_\textrm{LM} & \Delta^{\star} & \left\{\textit{L}-\textit{U}\right\} & \Delta^{\star} \\
\hline
1 & 71.05,\,140.75 & 28.95\% & 71.04,\,140.76 & 28.96\% & \textrm{REML}>\textrm{LM} & \textrm{REML}<\textrm{LM}\\
2 & 70.97,\,140.91 & 29.03\% & 70.97,\,140.91 & 29.03\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
3 & 70.10,\,140.65 & 28.90\% & 71.11,\,140.63 & 28.89\% & \textrm{REML}>\textrm{LM} & \textrm{REML}>\textrm{LM}\\
4 & 71.05,\,140.74 & 28.95\% & 71.05,\,140.75 & 28.95\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
5 & 71.03,\,140.78 & 28.97\% & 71.04,\,140.76 & 28.96\% & \textrm{REML}>\textrm{LM} & \textrm{REML}>\textrm{LM}\\
6 & 71.02,\,140.80 & 28.98\% & 71.02,\,140.80 & 28.98\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
\hline
\end{array}}$$A sponsor would prefer \(\small{\left\{L\,,U\right\}}\) as wide as possible. Hence, \(\small{\textrm{REML}}\) is the way to go. From the patient’s – and therefore, regulatory? – perspective it is obviously the other way ’round \(\small{(\Delta^{\star}}\) as small as possible). Bonus question: What about the Type I Error? Of course, discussed in the paper…
❝ … but another is to judge practical relevance. I was told that it is the latter that is of interest to the author.
Understandable. However, even if not practically relevant I prefer the “better” one. The paper’s Table 4 is interesting.
—
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- “Fixed Effects, Rather Than Random Effects…” ElMaestro 2021-08-04 08:18 [Regulatives / Guidelines]
- Very nice!Helmut 2021-08-04 10:16
- Very nice! ElMaestro 2021-08-04 12:51
- Narrower CI with LM? Helmut 2021-08-04 15:22
- Very nice! ElMaestro 2021-08-04 12:51
- Very nice!Helmut 2021-08-04 10:16