Very nice! [Regulatives / Guidelines]

posted by Helmut Homepage – Vienna, Austria, 2021-08-04 12:16 (1135 d 18:34 ago) – Posting: # 22503
Views: 3,207

Hi ElMaestro,

[image] here's a paper that discusses the funky issue with fixed effects versus random effects.

❝ Enjoy.


THX, I did. :-D

❝ In particular, who can come up with a quantitative relevant measure of the difference any estimator makes if you have two model alternatives?


Define relevant. ;-)

❝ One thing is of course to judge if estimate A is closer to the true value that estimator B, or if its variance is smaller, …


\(\small{\delta_{\,estimate-true}\small}\) or – likely better – \(\small{|\,\textrm{RE}\,(\%)\,|=|\,100(estimate-true)/true\,|}\) is commonly used.
Example for \(\small{\sigma_\textrm{wR}^2=0.2025}\) of the paper’s Table 2:
$$\textbf{Table I:}\;\textrm{Comparison of models' estimates}$$$$\small{\begin{array}{cccccccl}
\hline
\text{Scenario} & \hat\sigma_\textrm{wR,REML}^2 & \delta & |\,RE\,(\%)\,| & \hat\sigma_\textrm{wR,Lin.model}^2 & \delta & |\,RE\,(\%)\,| & \textrm{Comparison of }|\,RE\,(\%)\,|\\
\hline
1 & 0.2023 & -0.0002 & 0.0988 & 0.2024 & -0.0001 & 0.0494 & \text{Linear model "better"} \\
2 & 0.2036 & +0.0011 & 0.5432 & 0.2036 & +0.0011 & 0.5432 & \text{Equal} \\
3 & 0.2014 & -0.0011 & 0.5432 & 0.2013 & -0.0012 & 0.5926 & \text{REML "better"} \\
4 & 0.2022 & -0.0003 & 0.1481 & 0.2023 & -0.0002 & 0.0988 & \text{Linear model "better"} \\
5 & 0.2025 & \pm 0.0000 & 0.0000 & 0.2024 & -0.0001 & 0.0494 & \text{REML "better"} \\
6 & 0.2027 & +0.0002 & 0.0988 & 0.2027 & +0.0002 & 0.0988 & \text{Equal} \\
\hline
\end{array}}$$There is no clear winner. IMHO, it boils down to the question which of the scenarios is most likely occurring in practice. No idea.

We can look at the expanded limits \(\small{\left\{L\,,U\right\}}=100\exp(\mp0.76\,\hat{\sigma}_\textrm{wR})\) and the back-calculated ‘clinically not relevant difference’ \(\small{\Delta^{\star}=100-L}\) as well:
$$\textbf{Table II:}\;\textrm{Comparison of ABEL}$$$$\small{\begin{array}{ccccccc}
\hline
\text{Scenario} & \left\{\textit{L},\,\textit{U}\right\}_\textrm{REML} & \Delta^{\star} & \left\{\textit{L},\,\textit{U}\right\}_\textrm{LM} & \Delta^{\star} & \left\{\textit{L}-\textit{U}\right\} & \Delta^{\star} \\
\hline
1 & 71.05,\,140.75 & 28.95\% & 71.04,\,140.76 & 28.96\% & \textrm{REML}>\textrm{LM} & \textrm{REML}<\textrm{LM}\\
2 & 70.97,\,140.91 & 29.03\% & 70.97,\,140.91 & 29.03\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
3 & 70.10,\,140.65 & 28.90\% & 71.11,\,140.63 & 28.89\% & \textrm{REML}>\textrm{LM} & \textrm{REML}>\textrm{LM}\\
4 & 71.05,\,140.74 & 28.95\% & 71.05,\,140.75 & 28.95\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
5 & 71.03,\,140.78 & 28.97\% & 71.04,\,140.76 & 28.96\% & \textrm{REML}>\textrm{LM} & \textrm{REML}>\textrm{LM}\\
6 & 71.02,\,140.80 & 28.98\% & 71.02,\,140.80 & 28.98\% & \textrm{REML}=\textrm{LM} & \textrm{REML}=\textrm{LM}\\
\hline
\end{array}}$$A sponsor would prefer \(\small{\left\{L\,,U\right\}}\) as wide as possible. Hence, \(\small{\textrm{REML}}\) is the way to go. From the patient’s – and therefore, regulatory? – perspective it is obviously the other way ’round \(\small{(\Delta^{\star}}\) as small as possible). Bonus question: What about the Type I Error? Of course, discussed in the paper…

❝ … but another is to judge practical relevance. I was told that it is the latter that is of interest to the author. :-D


Understandable. However, even if not practically relevant I prefer the “better” one. The paper’s Table 4 is interesting.

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,223 posts in 4,877 threads, 1,655 registered users;
19 visitors (0 registered, 19 guests [including 4 identified bots]).
Forum time: 06:50 CEST (Europe/Vienna)

One of the symptoms of an approaching nervous breakdown
is the belief that one’s work is terribly important.    Bertrand Russell

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5