FARTSSIE v2.5 [Software]

posted by Helmut Homepage – Vienna, Austria, 2020-10-18 11:09 (468 d 04:11 ago) – Posting: # 22022
Views: 2,203

Dear all,

up to v2.4 of 14 March 2019 FARTSSIE’s Bioequivalence, Replicate-sheet contained two boxes for reference-scaling. The sample size was wrong because no analytical solution for power exists and simulations are required instead.

In v2.5 of 13 October 2020 Dave deleted the boxes and suggests to install PowerTOST. He gives in two boxes the arguments for PowerTOST’s functions sampleN.scABEL() for Average Bioequivalence with Expanding Limts (EMA and many others, Health Canada) and sampleN.NTIDFDA() for the FDA’s reference-scaling for NTIDs.
However, in the former don’t use the argument regulator="FDA" as he suggests, since RSABE  ABEL. Not only that the regulatory constants are different (≈0.8925742 vs 0.760), these are different approaches (upper limit of the linearized criterion ≤0 vs expansion of the BE limits).

library(PowerTOST) # show the regulatory conditions
reg_const(regulator = "EMA")
EMA regulatory settings
- CVswitch            = 0.3
- cap on scABEL if CVw(R) > 0.5
- regulatory constant = 0.76
- pe constraint applied

reg_const(regulator = "HC")
HC regulatory settings
- CVswitch            = 0.3
- cap on scABEL if CVw(R) > 0.57382
- regulatory constant = 0.76
- pe constraint applied

reg_const(regulator = "FDA")
FDA regulatory settings
- CVswitch            = 0.3
- no cap on scABEL
- regulatory constant = 0.8925742
- pe constraint applied


Use the function sampleN.RSABE() instead. Examples with comments at the end.

Since in the survey 20% of participants reported to never update their software: Not a good idea.


library(PowerTOST)
sampleN.scABEL(CV = 0.6, design = "2x2x4", regulator = "EMA") # correct

+++++++++++ scaled (widened) ABEL +++++++++++
            Sample size estimation

   (simulation based on ANOVA evaluation)
---------------------------------------------
Study design: 2x2x4 (4 period full replicate)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.6; CVw(R) = 0.6
True ratio = 0.9

ABE limits / PE constraint = 0.8 ... 1.25
EMA regulatory settings
- CVswitch            = 0.3
- cap on scABEL if CVw(R) > 0.5
- regulatory constant = 0.76
- pe constraint applied


Sample size search
 n     power
30   0.7851
32   0.8101


sampleN.scABEL(CV = 0.6, design = "2x2x4", regulator = "HC") # correct

+++++++++++ scaled (widened) ABEL +++++++++++
            Sample size estimation

(simulations based on intra-subject contrasts)
----------------------------------------------
Study design:  2x2x4 (full replicate)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.6; CVw(R) = 0.6
True ratio = 0.9

ABE limits / PE constraint = 0.8 ... 1.25
HC regulatory settings
- CVswitch            = 0.3
- cap on scABEL if CVw(R) > 0.57382
- regulatory constant = 0.76
- pe constraint applied


Sample size search
 n     power
24   0.7505
26   0.7851
28   0.8118


sampleN.scABEL(CV = 0.6, design = "2x2x4", regulator = "FDA") # wrong

+++++++++++ scaled (widened) ABEL +++++++++++
            Sample size estimation
(simulations based on intra-subject contrasts)
----------------------------------------------
Study design:  2x2x4 (full replicate)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.6; CVw(R) = 0.6
True ratio = 0.9

ABE limits / PE constraint = 0.8 ... 1.25
FDA regulatory settings
- CVswitch            = 0.3
- no cap on scABEL
- regulatory constant = 0.8925742
- pe constraint applied


Sample size search
 n     power
16   0.7017
18   0.7476
20   0.7813
22   0.8071


sampleN.RSABE(CV = 0.6, design = "2x2x4") # correct

++++++++ Reference scaled ABE crit. +++++++++
           Sample size estimation
---------------------------------------------
Study design: 2x2x4 (4 period full replicate)
log-transformed data (multiplicative model)
1e+05 studies for each step simulated.

alpha  = 0.05, target power = 0.8
CVw(T) = 0.6; CVw(R) = 0.6
True ratio = 0.9

ABE limits / PE constraints = 0.8 ... 1.25
FDA regulatory settings
- CVswitch            = 0.3
- regulatory constant = 0.8925742
- pe constraint applied


Sample size search
 n     power
16   0.67580
18   0.72735
20   0.76531
22   0.79589
24   0.81947


Dif-tor heh smusma 🖖
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Thread locked

Complete thread:

Activity
 Admin contact
21,858 posts in 4,574 threads, 1,554 registered users;
online 14 (0 registered, 14 guests [including 12 identified bots]).
Forum time: Saturday 14:20 CET (Europe/Vienna)

Truth in science can be defined as the working hypothesis best suited
to open the way to the next better one.    Konrad Lorenz

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5