SE of ∆? [General Statistics]
Dear all,
now I’m confused.
In Chow & Liu* (\(\small{(3.3.1)}\) p.62, Table 3.4.1. p.65, and \(\small{(4.2.2)}\) p.83) the standard error of the difference is given as $$\hat{\sigma}_\textrm{d}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}$$ I beg your pardon?
now I’m confused.
In Chow & Liu* (\(\small{(3.3.1)}\) p.62, Table 3.4.1. p.65, and \(\small{(4.2.2)}\) p.83) the standard error of the difference is given as $$\hat{\sigma}_\textrm{d}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}$$ I beg your pardon?
- Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. Boca Raton: CRC Press; 3rd ed. 2009.
—
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Adjusted indirect comparisons: Algebra Helmut 2020-10-01 16:41 [General Statistics]
- Adjusted indirect comparisons: Algebra d_labes 2020-10-01 17:03
- Adjusted indirect comparisons: Typo Helmut 2020-10-01 17:13
- SE of ∆?Helmut 2020-10-02 14:56
- SE of ∆? or what? d_labes 2020-10-02 18:54
- Adjusted indirect comparisons: Algebra d_labes 2020-10-01 17:03