## SE of ∆? [General Statistics]

Dear all,

now I’m confused.

In Chow & Liu* (\(\small{(3.3.1)}\) p.62, Table 3.4.1. p.65, and \(\small{(4.2.2)}\) p.83) the standard error of the difference is given as $$\hat{\sigma}_\textrm{d}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}$$ I beg your pardon?

now I’m confused.

In Chow & Liu* (\(\small{(3.3.1)}\) p.62, Table 3.4.1. p.65, and \(\small{(4.2.2)}\) p.83) the standard error of the difference is given as $$\hat{\sigma}_\textrm{d}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}$$ I beg your pardon?

- Chow SC, Liu JP.
*Design and Analysis of Bioavailability and Bioequivalence Studies.*Boca Raton: CRC Press; 3^{rd}ed. 2009.

—

Helmut Schütz

The quality of responses received is directly proportional to the quality of the question asked. 🚮

Science Quotes

*Dif-tor heh smusma*🖖Helmut Schütz

The quality of responses received is directly proportional to the quality of the question asked. 🚮

Science Quotes

### Complete thread:

- Adjusted indirect comparisons: Algebra Helmut 2020-10-01 16:41 [General Statistics]
- Adjusted indirect comparisons: Algebra d_labes 2020-10-01 17:03
- Adjusted indirect comparisons: Typo Helmut 2020-10-01 17:13

- SE of ∆?Helmut 2020-10-02 14:56
- SE of ∆? or what? d_labes 2020-10-02 18:54

- Adjusted indirect comparisons: Algebra d_labes 2020-10-01 17:03