Adjusted indirect comparisons: Algebra [General Statistics]
Dear Helmut,
❝ ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$
—
Regards,
Detlew
Regards,
Detlew
Complete thread:
- Adjusted indirect comparisons: Algebra Helmut 2020-10-01 16:41 [General Statistics]
- Adjusted indirect comparisons: Algebrad_labes 2020-10-01 17:03
- Adjusted indirect comparisons: Typo Helmut 2020-10-01 17:13
- SE of ∆? Helmut 2020-10-02 14:56
- SE of ∆? or what? d_labes 2020-10-02 18:54
- Adjusted indirect comparisons: Algebrad_labes 2020-10-01 17:03