Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 17:03 (146 d 05:49 ago) – Posting: # 21961
Views: 786

Dear Helmut,

» ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$
Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

Activity
 Admin contact
21,355 posts in 4,458 threads, 1,493 registered users;
online 19 (0 registered, 19 guests [including 5 identified bots]).
Forum time: Wednesday 21:52 CET (Europe/Vienna)

It is better to be wrong than to be vague.
In trial and error, the error is the true essential.    Freeman Dyson

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5