Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 19:03 (1296 d 18:07 ago) – Posting: # 21961
Views: 2,248

Dear Helmut,

❝ ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$

Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
22,988 posts in 4,825 threads, 1,657 registered users;
91 visitors (0 registered, 91 guests [including 7 identified bots]).
Forum time: 13:10 CEST (Europe/Vienna)

The whole purpose of education is
to turn mirrors into windows.    Sydney J. Harris

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5