Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 19:03 (1643 d 15:59 ago) – Posting: # 21961
Views: 3,606

Dear Helmut,

❝ ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$

Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
23,411 posts in 4,922 threads, 1,666 registered users;
141 visitors (0 registered, 141 guests [including 9 identified bots]).
Forum time: 11:03 CEST (Europe/Vienna)

Statistic – A subject which most statisticians find difficult
but in which nearly all physicians are expert.    Stephen Senn

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5