Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 17:03 (384 d 05:33 ago) – Posting: # 21961
Views: 1,221

Dear Helmut,

» ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$
Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

Activity
 Admin contact
21,749 posts in 4,547 threads, 1,545 registered users;
online 28 (0 registered, 28 guests [including 2 identified bots]).
Forum time: Wednesday 22:36 CEST (Europe/Vienna)

Mediocrity finds safety in standardization.    Frederick E. Crane

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5