Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 17:03 (203 d 20:28 ago) – Posting: # 21961
Views: 923

Dear Helmut,

» ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$
Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

Activity
 Admin contact
21,429 posts in 4,479 threads, 1,512 registered users;
online 18 (0 registered, 18 guests [including 4 identified bots]).
Forum time: Friday 13:32 CEST (Europe/Vienna)

There is one certainty in drug development
and statistics that one can depend on:
the data are always late.    Scott Patterson and Byron Jones

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5