Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by d_labes  – Berlin, Germany, 2020-10-01 17:03 (595 d 03:38 ago) – Posting: # 21961
Views: 1,507

Dear Helmut,

» ... The error term in the 2×2×2 crossover is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}},\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$
Here I can't follow you. From where arises the 2 in formula (3)

Regards,

Detlew

Complete thread:

UA Flag
Activity
 Admin contact
22,085 posts in 4,629 threads, 1,566 registered users;
online 14 (0 registered, 14 guests [including 13 identified bots]).
Forum time: Thursday 20:42 CEST (Europe/Vienna)

That which is not controversial
is of no particular interest.    Johann Wolfgang von Goethe

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5