Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by Helmut Homepage – Vienna, Austria, 2020-10-01 16:41 (57 d 06:03 ago) – Posting: # 21957
Views: 647

Dear all,

in Gwaza et al.1 and all following publications this formula is given for the standard deviation of the difference: $$SD=\frac{2\cdot SE_\textrm{(d)}}{\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}}\tag{1}$$ Jiři pointed out that this might not be correct. I checked his algebra and think that he is right.
Let’s do it step by step. The error term in the 2×2×2 crossover2 is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively3 we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\equiv\sqrt{\frac{MSE}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$ Square both sides of \((3)\) $$SE_{\Delta}^{2}=\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )\tag{4a}$$ Rearrange $$SD_{\textrm{w}}^{2}=\frac{2\cdot SE_{\Delta}^{2}}{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}\tag{4b}$$ Square root of both sides $$SD_{\textrm{w}}=\frac{\sqrt{2}\cdot SE_{\Delta}}{\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}}\tag{5}$$ If we apply \((1)\) instead of \((5)\), the confidence interval will be by \(\small{\sqrt{2}}\) too wide. Opinions?


  1. Gwaza L, Gordon J, Welink J, Potthast H, Hansson H, Stahl M, García-Arieta A. Statistical approaches to indirectly compare bioequivalence between generics: a comparison of methodologies employing artemether / lume­fantrine 20/120 mg tablets as prequalified by WHO. Eur J Clin Pharmacol. 2012; 68(12): 1611–8. doi:10.1007/s00228-012-1396-1.
  2. Hauschke D, Steinijans VW, Pigeot I. Bioequivalence Studies in Drug Development. Chichester: John Wiley; 2007. p. 90.
  3. Patterson SD, Jones B. Bioequivalence and Statistics in Clinical Pharmacology. Boca Raton: CRC Press; 2nd ed. 2016. \(\small{(3.8)}\) p. 37.

Dif-tor heh smusma 🖖
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

Activity
 Admin contact
21,214 posts in 4,427 threads, 1,481 registered users;
online 17 (0 registered, 17 guests [including 15 identified bots]).
Forum time: Friday 21:44 CET (Europe/Vienna)

Biostatistician. One who has neither the intellect for mathematics
nor the commitment for medicine but likes to dabble in both.    Stephen Senn

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5