Adjusted indirect comparisons: Algebra [General Sta­tis­tics]

posted by Helmut Homepage – Vienna, Austria, 2020-10-01 16:41 (146 d 06:14 ago) – Posting: # 21957
Views: 869

Dear all,

in Gwaza et al.1 and all following publications this formula is given for the standard deviation of the difference: $$SD=\frac{2\cdot SE_\textrm{(d)}}{\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}}\tag{1}$$ Jiři pointed out that this might not be correct. I checked his algebra and think that he is right.
Let’s do it step by step. The error term in the 2×2×2 crossover2 is given by $$SE_\textrm{(d)}=SE_\Delta=\widehat{\sigma}_\textrm{w}\sqrt{\frac{1}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{2}$$where \(\small{\widehat{\sigma}_\textrm{w}=SD_\textrm{w}=\sqrt{MSE}}\) from ANOVA. Alternatively3 we can write $$SE_\Delta=\sqrt{\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\equiv\sqrt{\frac{MSE}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )}\tag{3}$$ Square both sides of \((3)\) $$SE_{\Delta}^{2}=\frac{SD_{\textrm{w}}^{2}}{2}\left (\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}\right )\tag{4a}$$ Rearrange $$SD_{\textrm{w}}^{2}=\frac{2\cdot SE_{\Delta}^{2}}{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}\tag{4b}$$ Square root of both sides $$SD_{\textrm{w}}=\frac{\sqrt{2}\cdot SE_{\Delta}}{\sqrt{\frac{1}{n_\textrm{1}}+\frac{1}{n_\textrm{2}}}}\tag{5}$$ If we apply \((1)\) instead of \((5)\), the confidence interval will be by \(\small{\sqrt{2}}\) too wide. Opinions?


  1. Gwaza L, Gordon J, Welink J, Potthast H, Hansson H, Stahl M, García-Arieta A. Statistical approaches to indirectly compare bioequivalence between generics: a comparison of methodologies employing artemether / lume­fantrine 20/120 mg tablets as prequalified by WHO. Eur J Clin Pharmacol. 2012; 68(12): 1611–8. doi:10.1007/s00228-012-1396-1.
  2. Hauschke D, Steinijans VW, Pigeot I. Bioequivalence Studies in Drug Development. Chichester: John Wiley; 2007. p. 90.
  3. Patterson SD, Jones B. Bioequivalence and Statistics in Clinical Pharmacology. Boca Raton: CRC Press; 2nd ed. 2016. \(\small{(3.8)}\) p. 37.

Dif-tor heh smusma 🖖
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

Activity
 Admin contact
21,355 posts in 4,458 threads, 1,493 registered users;
online 20 (0 registered, 20 guests [including 4 identified bots]).
Forum time: Wednesday 21:55 CET (Europe/Vienna)

It is better to be wrong than to be vague.
In trial and error, the error is the true essential.    Freeman Dyson

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5