## Bioequivalence Limit, Power and interpretation [Regulatives / Guidelines]

Hi Pharma88,

» 1. What to conclude if we got the result where study is failed in lower side i.e. below 80%...
» 2. What to conclude if we got the result where study is failed in upper side i.e. above 125%...

See this post and scroll down to formula (7.1). The text below (esp. 2. and footnote h.) will answer your questions.

» 3. What to conclude where study's post hoc power is less then 80 or 85%?

Nothing useful. Post hoc (a.k.a. a posteriori, retrospective) power is completely irrelevant for the BE assessment. Stop estimating it. See also the vignette of the package PowerTOST.

» What are the main factors associated with apart from human or instrument error?

You planned the study based on assumptions (T/R-ratio, variability, dropout-rate) and for a desired (target) power. If at least one of the assumptions is not fulfilled (see the post mentioned above), you may loose power and the chance of failing increases. Even if all assumptions turn out to be exactly realized in study, the chance of failing is $$\small{\beta=1-\pi}$$, where $$\small{\beta}$$ is the probability of the Type II Error (producer’s risk) and $$\small{\pi}$$ the desired power.
In other words, if you plan studies for 80% power, one out of five will fail by pure chance. That’s life.

Simple example in :

library(PowerTOST) set.seed(123456) CV      <- 0.25 # assumed CV theta0  <- 0.95 # assumed T/R-ratio do.rate <- 0.10 # anticipated dropout rate (10%) # defaults: targetpower 0.80, design = "2x2" studies <- 20 N       <- sampleN.TOST(CV = CV, theta0 = theta0, details = FALSE,                         print = FALSE)[["Sample size"]] res     <- data.frame(study = c("as planned", 1:studies),                       CV = c(CV, rnorm(mean = CV, n = studies, sd = 0.05)),                       theta0 = c(theta0, rnorm(mean = theta0, n = studies, sd = 0.05)),                       n = c(N, round(runif(n = studies, min = N*(1-do.rate), max = N))),                       CL.lower = NA, CL.upper = NA, BE = "fail", assessment = NA,                       power = NA) for (j in 1:nrow(res)) {   res[j, 5:6]  <- round(100*CI.BE(CV = res$CV[j], pe = res$theta0[j],                                   n = res$n[j]), 2) if (res$CL.lower[j] >= 80 & res$CL.upper[j] <= 125) { res$BE[j]         <- "pass"     res$assessment[j] <- "equivalent" } else { if (res$CL.lower[j] > 125 | res$CL.upper[j] < 80) { res$assessment[j] <- "inequivalent"     } else {       res$assessment[j] <- "indecisive" } } res$power[j] <- suppressMessages(                      power.TOST(CV = res$CV[j], theta0 = res$theta0[j],                                 n = res$n[j])) } res[, c(2:3, 9)] <- signif(res[, c(2:3, 9)], 4) txt <- paste(sprintf("%1.0f%%", 100*length(which(res$BE == "fail"))/studies),              "of actual studies failed\n") cat(txt); print(res, row.names = FALSE)

Gives

25% of actual studies failed       study     CV theta0  n CL.lower CL.upper   BE assessment  power  as planned 0.2500 0.9500 28    84.91   106.28 pass equivalent 0.8074           1 0.2917 0.9123 26    79.66   104.48 fail indecisive 0.4729           2 0.2362 1.0130 25    90.47   113.39 pass equivalent 0.8923           3 0.2322 0.9519 28    85.75   105.68 pass equivalent 0.8647           4 0.2544 0.9595 28    85.60   107.55 pass equivalent 0.8274           5 0.3626 0.9731 27    82.64   114.59 pass equivalent 0.4513           6 0.2917 0.9286 26    81.09   106.35 pass equivalent 0.5496           7 0.3156 0.9508 26    82.15   110.05 pass equivalent 0.5534           8 0.3751 0.9852 27    83.23   116.63 pass equivalent 0.4154           9 0.3084 0.9986 27    86.80   114.88 pass equivalent 0.6819          10 0.2287 0.9190 26    82.56   102.29 pass equivalent 0.6927          11 0.2002 0.9072 26    82.58    99.67 pass equivalent 0.7181          12 0.1943 0.9535 26    87.02   104.47 pass equivalent 0.9386          13 0.2472 0.8977 26    79.97   100.77 fail indecisive 0.5040          14 0.3087 0.8126 26    70.42    93.76 fail indecisive 0.0712          15 0.3027 0.8935 26    77.64   102.83 fail indecisive 0.3582          16 0.2529 0.9069 25    80.38   102.33 pass equivalent 0.5300          17 0.2132 1.0280 28    93.38   113.17 pass equivalent 0.9547          18 0.2965 1.0010 27    87.44   114.54 pass equivalent 0.7285          19 0.3334 1.0020 26    85.91   116.91 pass equivalent 0.5542          20 0.2780 0.8942 26    78.56   101.78 fail indecisive 0.4108

Little bit cheating because neither the T/R-ratio nor the CV follow a normal distribution. But you get the idea. Some of the studies pass even with low post hoc power. An example is #5, where the “worse” CV is counteracted by a “better” T/R-ratio. The post hoc power of just ~45% is not relevant. It was a lucky punch.
When you increase the number of simulated studies you will sooner or later end up with 20% failing.

Dif-tor heh smusma 🖖
Helmut Schütz The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

### Complete thread:

Admin contact
21,530 posts in 4,499 threads, 1,524 registered users;
online 8 (0 registered, 8 guests [including 4 identified bots]).
Forum time: Monday 21:49 CEST (Europe/Vienna)

Young man, in mathematics you don’t understand things.
You just get used to them.    John von Neumann

The Bioequivalence and Bioavailability Forum is hosted by Ing. Helmut Schütz 