Interlude II (simulations) [RSABE / ABEL]

posted by PharmCat  – Russia, 2020-08-19 20:26 (104 d 22:55 ago) – Posting: # 21890
Views: 1,953

Hi Helmut!

using DataFrames, CSV, ReplicateBE, LinearAlgebra

path      = dirname(@__FILE__)
dfa       = CSV.File(path*"/sim500-2x3x3.csv") |> DataFrame
dfa.logpk = log.(dfa.PK)

res = Vector{Any}(undef, 500)
pd  = Vector{Any}(undef, 500)
os  = Vector{Any}(undef, 500)
for i in 1:500
    df = filter(r -> i == r.set , dfa)
    res[i] = ReplicateBE.rbe!(df, dvar = :logpk, subject = :subject, formulation = :treatment, period = :period, sequence = :sequence, g_tol = 1e-10, singlim = 1e-12)
    pd[i]  = isposdef(Symmetric(res[i].result.H))
    os[i]  = ReplicateBE.optstat(res[i])
    println(i)
end
println("Positive definite: ", sum(pd), "(",sum(pd)/500*100,"%)")
println("Converged: ", sum(os), "(",sum(os)/500*100,"%)")


Positive definite: 332(66.4%)
Converged: 500(100.0%)

I can make table with results if necessary.

Complete thread:

Activity
 Admin contact
21,232 posts in 4,427 threads, 1,481 registered users;
online 8 (1 registered, 7 guests [including 4 identified bots]).
Forum time: Wednesday 19:22 UTC (Europe/Vienna)

A big data-analyst is an expert
in producing misleading conclusions from huge datasets.
It is much more efficient to use a statistician,
who can do the same with small ones.    Stephen Senn

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5