Still can't make it work [R for BE/BA]

posted by PharmCat  – Russia, 2020-08-07 16:14 (203 d 05:36 ago) – Posting: # 21835
Views: 7,171

(edited by PharmCat on 2020-08-07 23:12)

» Here all subjects are (y is logarithmised)


# Theta estimate θ was taken by REML

using CSV, DataFrames, StatsModels, StatsBase

path = dirname(@__FILE__)
cd(path)

data   = CSV.File("dat.csv", delim=' ')|> DataFrame
#Sort data
sort!(data, [:Subj, :Trt, :Per])
#Get X matrix, Z, y
X = ModelMatrix(ModelFrame(@formula(0 ~ Seq + Per + Trt), data)).m
Z = ModelMatrix(ModelFrame(@formula(0 ~ 0 + Trt), data, contrasts = Dict(:Trt => StatsModels.FullDummyCoding()))).m
y   = data[!, :y]
#Xv vector of Xi, Zv vector of Zi, yv vector of yi
u = unique(data[!, :Subj])
Xv = Vector{Matrix}(undef, length(u))
Zv = Vector{Matrix}(undef, length(u))
yv = Vector{Vector}(undef, length(u))
for i = 1:length(u)
    v = findall(x -> x == u[i], data[!, :Subj])
    Xv[i] = view(X, v, :)
    Zv[i] = view(Z, v, :)
    yv[i] = view(y, v)
end

# Theta estimate θ[1:2] for R, θ[1:3] for G
# Very hard to take good θ estmate for this design
# If you provide your estimate, β can be recalculated

θ = [0.013246492714940418,
0.008891008058562478,
0.03621599611178057,
0.06160355780666301,
0.9661995154179528]
#G matrix
G = [θ[3] sqrt(θ[3]*θ[4])*θ[5]; sqrt(θ[3]*θ[4])*θ[5] θ[4]]

#Vector of R matrices
Rv = Diagonal.(map(x -> x * θ[1:2], Zv))

#Construct vector of Vi
Vv = Vector{Matrix}(undef, length(u))

for i = 1:length(u)

    global Vv[i] = Zv[i]*G*Zv[i]' + Rv[i]
end

#Vector of inverted Vi
iVv = inv.(Vv)

M1 = zeros(6, 6)
M2 = zeros(6)

#Calc M1 & M2
for i = 1:length(u)

    global M1 .+= Xv[i]'*iVv[i]*Xv[i]
    global M2 .+= Xv[i]'*iVv[i]*yv[i]
end

β = inv(M1) * M2

#=
julia> β
6-element Array{Float64,1}:
 7.904258681084915
 0.0547761264037151
 0.05092362547466389
 0.0012959346740553102
 0.048118895192829976
 0.02239133333333365
=#


I get beta:

7.904258681084915
0.0547761264037151
0.05092362547466389
0.0012959346740553102
0.048118895192829976
0.02239133333333365

Complete thread:

Activity
 Admin contact
21,357 posts in 4,459 threads, 1,492 registered users;
online 8 (0 registered, 8 guests [including 4 identified bots]).
Forum time: Friday 21:50 UTC (Europe/Vienna)

Those who make no mistakes are making the biggest mistakes of all 
they are attempting nothing new.    Anthony de Mello

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5