Update III [🇷 for BE/BA]

posted by ElMaestro  – Denmark, 2020-07-12 21:46 (804 d 03:32 ago) – Posting: # 21678
Views: 15,172

Look at this baby:

rm(list=ls(all=TRUE))

###### par vector is c(varT, varBR, varWR)

######
######   Section 1: Household things
######



CreateX=function(D)
{
 ##first the two treatments
 TrtT=as.numeric(as.character(D$Trt)=="T")
 TrtR=as.numeric(as.character(D$Trt)=="R")
 X=cbind(TrtT, TrtR)
 R= qr(X)$rank

 ## subjects: in a mixed model with subj as random
 ## we do not do subjects also as fixed, therefore they are #'ed away here
 ## for (s in unique(D$Subj))
 ## {
 ## v=as.numeric(D$Subj==s)
 ## #print(v)
 ## XX=data.frame(X, v)
 ## names(XX)[ncol(XX)] = paste("S", s, sep="")
 ## rnk=qr(XX)$rank
 ## if (rnk>R)
  ##  {
  ##     X=XX
  ##     R=rnk
  ##  }
  ## }
 ##now the Pers
 for (p in unique(D$Per))
 {
  v=as.numeric(D$Per==p)
  #print(v)
  XX=data.frame(X, v)
  names(XX)[ncol(XX)] = paste("P", p, sep="")
  rnk=qr(XX)$rank
  if (rnk>R)
    {
       X=XX
       R=rnk
    }
 }

 for (q in unique(D$Seq))
 {
  v=as.numeric(D$Seq==q)
  #print(v)
  XX=data.frame(X, v)
  names(XX)[ncol(XX)] = paste("Q", q, sep="")
  rnk=qr(XX)$rank
  if (rnk>R)
    {
       X=XX
       R=rnk
    }
 }
 return(as.matrix(X))
}




Create.CovM=function(Params)
##block diagonal covariance matrix
{
  varT=Params[1]
  varBR=Params[2]
  varWR=Params[3]
  #varRT=Params[4]
  #cat("Vars:", varT, varBR, varWR,"\n")

  Nobs=length(D$Y)
  V=matrix(0,ncol=Nobs, nrow=Nobs)
  for (iRow in 1:Nobs)
  for (iCol in 1:Nobs)
  {
   
   ## the diagonal
   if (iCol==iRow)
    {
      if (D$Trt[iRow]=="T") V[iRow,iCol]=V[iRow,iCol]+varT
      if (D$Trt[iRow]=="R") V[iRow,iCol]=V[iRow,iCol]+varWR +varBR
    }

   ## off diagonal
   if (iCol!=iRow)
   if (D$Subj[iRow]==D$Subj[iCol])
    {
     if (D$Trt[iCol]==D$Trt[iRow]) V[iRow,iCol]= V[iRow,iCol]+varBR
     #if (D$Trt[iCol]!=D$Trt[iRow]) V[iRow,iCol]= V[iRow,iCol]+varRT
    }
  }
  return(as.matrix(V))
}

######
######   Section 2: Matrix things
######


Obj.F12=function(Pars)
##this is line 3 of page 10 of:
##http://people.csail.mit.edu/xiuming/docs/tutorials/reml.pdf
{
  CovM=Create.CovM(Pars)

  A= -0.5*log(det(CovM))
  B= -0.5*log(det(t(X) %*% solve(CovM) %*% X))
  est.b = solve(t(X) %*% solve(CovM) %*% X) %*% t(X) %*% solve(CovM) %*% y
  tmp= y - X %*% est.b
  C=-0.5 *(t(tmp) %*% solve(CovM) %*% tmp)
  return(A+B+C)
}



Some.Initial.Guesses=function(foo)
{
  #guess variance within R
  D1=subset(D, D$Trt=="R")
  m=lm(log(Y)~factor(Subj)+factor(Seq)+factor(Per) , data=D1)
  #print(anova(m))
  varWR= anova(m)["Residuals", "Mean Sq"]
  m=lm(log(Y)~factor(Subj)+factor(Seq)+factor(Per)+factor(Trt) , data=D)
  varBR= anova(m)["factor(Subj)", "Mean Sq"]
  ##total var T, cheaply
  ##actually, this may be much better: varT=varBR+varWR
  D2=subset(D, D$Trt=="T")
  varT=var(log(D2$Y))
  varT=varBR+varWR
  L=list(varT=varT, varBR=varBR, varWR=varWR)
  return(L)
}



####
#### section 3: execution
####



D=read.csv("EMAII.a.csv" , header=T, sep="\t") ##public = easier
X=CreateX(D) ##public = easier
y=log(D$Y) ##public = easier


MyREML=function(foo.bar)
{
  L=Some.Initial.Guesses(0)
  print(L)
  parIni=c(0.06, 0.032, 0.012)
  F=optim(par=parIni, fn=Obj.F12,
      #method="BFGS",
      #lower=c(0.003,0.003,0.003), upper=c(1,1,1),
      control=list(reltol=1e-11, trace=T, fnscale=-1))
  print(F)
}
MyREML(0)



On my machine it gives:
$par
[1] 0.06776119 0.03636979 0.01237020


:-)

Pass or fail!
ElMaestro

Complete thread:

UA Flag
Activity
 Admin contact
22,385 posts in 4,684 threads, 1,594 registered users;
online 6 (0 registered, 6 guests [including 4 identified bots]).
Forum time: Sunday 01:18 CEST (Europe/Vienna)

You really don’t know what you don’t know until you write about it.
Then, everyone knows what you don’t know.    Rod Machado

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5