Update III [🇷 for BE/BA]

posted by ElMaestro  – Denmark, 2020-07-12 23:46 (1527 d 05:45 ago) – Posting: # 21678
Views: 19,069

Look at this baby:

rm(list=ls(all=TRUE))

###### par vector is c(varT, varBR, varWR)

######
######   Section 1: Household things
######



CreateX=function(D)
{
 ##first the two treatments
 TrtT=as.numeric(as.character(D$Trt)=="T")
 TrtR=as.numeric(as.character(D$Trt)=="R")
 X=cbind(TrtT, TrtR)
 R= qr(X)$rank

 ## subjects: in a mixed model with subj as random
 ## we do not do subjects also as fixed, therefore they are #'ed away here
 ## for (s in unique(D$Subj))
 ## {
 ## v=as.numeric(D$Subj==s)
 ## #print(v)
 ## XX=data.frame(X, v)
 ## names(XX)[ncol(XX)] = paste("S", s, sep="")
 ## rnk=qr(XX)$rank
 ## if (rnk>R)
  ##  {
  ##     X=XX
  ##     R=rnk
  ##  }
  ## }
 ##now the Pers
 for (p in unique(D$Per))
 {
  v=as.numeric(D$Per==p)
  #print(v)
  XX=data.frame(X, v)
  names(XX)[ncol(XX)] = paste("P", p, sep="")
  rnk=qr(XX)$rank
  if (rnk>R)
    {
       X=XX
       R=rnk
    }
 }

 for (q in unique(D$Seq))
 {
  v=as.numeric(D$Seq==q)
  #print(v)
  XX=data.frame(X, v)
  names(XX)[ncol(XX)] = paste("Q", q, sep="")
  rnk=qr(XX)$rank
  if (rnk>R)
    {
       X=XX
       R=rnk
    }
 }
 return(as.matrix(X))
}




Create.CovM=function(Params)
##block diagonal covariance matrix
{
  varT=Params[1]
  varBR=Params[2]
  varWR=Params[3]
  #varRT=Params[4]
  #cat("Vars:", varT, varBR, varWR,"\n")

  Nobs=length(D$Y)
  V=matrix(0,ncol=Nobs, nrow=Nobs)
  for (iRow in 1:Nobs)
  for (iCol in 1:Nobs)
  {
   
   ## the diagonal
   if (iCol==iRow)
    {
      if (D$Trt[iRow]=="T") V[iRow,iCol]=V[iRow,iCol]+varT
      if (D$Trt[iRow]=="R") V[iRow,iCol]=V[iRow,iCol]+varWR +varBR
    }

   ## off diagonal
   if (iCol!=iRow)
   if (D$Subj[iRow]==D$Subj[iCol])
    {
     if (D$Trt[iCol]==D$Trt[iRow]) V[iRow,iCol]= V[iRow,iCol]+varBR
     #if (D$Trt[iCol]!=D$Trt[iRow]) V[iRow,iCol]= V[iRow,iCol]+varRT
    }
  }
  return(as.matrix(V))
}

######
######   Section 2: Matrix things
######


Obj.F12=function(Pars)
##this is line 3 of page 10 of:
##http://people.csail.mit.edu/xiuming/docs/tutorials/reml.pdf
{
  CovM=Create.CovM(Pars)

  A= -0.5*log(det(CovM))
  B= -0.5*log(det(t(X) %*% solve(CovM) %*% X))
  est.b = solve(t(X) %*% solve(CovM) %*% X) %*% t(X) %*% solve(CovM) %*% y
  tmp= y - X %*% est.b
  C=-0.5 *(t(tmp) %*% solve(CovM) %*% tmp)
  return(A+B+C)
}



Some.Initial.Guesses=function(foo)
{
  #guess variance within R
  D1=subset(D, D$Trt=="R")
  m=lm(log(Y)~factor(Subj)+factor(Seq)+factor(Per) , data=D1)
  #print(anova(m))
  varWR= anova(m)["Residuals", "Mean Sq"]
  m=lm(log(Y)~factor(Subj)+factor(Seq)+factor(Per)+factor(Trt) , data=D)
  varBR= anova(m)["factor(Subj)", "Mean Sq"]
  ##total var T, cheaply
  ##actually, this may be much better: varT=varBR+varWR
  D2=subset(D, D$Trt=="T")
  varT=var(log(D2$Y))
  varT=varBR+varWR
  L=list(varT=varT, varBR=varBR, varWR=varWR)
  return(L)
}



####
#### section 3: execution
####



D=read.csv("EMAII.a.csv" , header=T, sep="\t") ##public = easier
X=CreateX(D) ##public = easier
y=log(D$Y) ##public = easier


MyREML=function(foo.bar)
{
  L=Some.Initial.Guesses(0)
  print(L)
  parIni=c(0.06, 0.032, 0.012)
  F=optim(par=parIni, fn=Obj.F12,
      #method="BFGS",
      #lower=c(0.003,0.003,0.003), upper=c(1,1,1),
      control=list(reltol=1e-11, trace=T, fnscale=-1))
  print(F)
}
MyREML(0)



On my machine it gives:
$par
[1] 0.06776119 0.03636979 0.01237020


:-)

Pass or fail!
ElMaestro

Complete thread:

UA Flag
Activity
 Admin contact
23,225 posts in 4,879 threads, 1,654 registered users;
37 visitors (0 registered, 37 guests [including 9 identified bots]).
Forum time: 05:31 CEST (Europe/Vienna)

The real purpose of the scientific method is to make sure
nature hasn’t misled you into thinking you know something
you actually don’t know.    Robert M. Pirsig

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5