RSABE ≠ ABE: Simulations mandatory [Power / Sample Size]
we cannot estimate the sample size of any reference-scaling method directly. These methods are frameworks: The decision whether conventional ABE or reference-scaling is used depends on the observed CVwR, for the EMA there is an upper cap at 50%, and all agencies impose a point estimate restriction of 80.00–125.00%. Contrary to ABE with fixed limits, the Null hypothesis is generated in face of the data. Power (and hence, the sample size) given these conditions cannot be derived analytically. We need simulations (as in the paper). See also here and there.
Your SAS-code is for ABE with fixed limits of 80–125%. Though it is possible to set up simulations for reference-scaling in SAS (105 studies at least), expect run times of many hours.*
Please read now this post as I already suggested previously.
Below a comparison of Table A2 of the two Lászlós for CVwR 30% and results obtained by
PowerTOST
. Runtime for the 16 scenarios on my machine three seconds. Good luck with SAS.library(PowerTOST)
GMR <- seq(0.85, 1.2, 0.05)
power <- c(0.8, 0.9)
A2 <- c(127, 35, 19, 15, 18, 30, 68, ">201",
180, 49, 25, 19, 24, 42, 95, ">201")
res <- data.frame(power = power, GMR = rep(GMR, length(power)), A2 = A2)
j <- 0
for (k in seq_along(power)) {
for (l in seq_along(GMR)) {
j <- j + 1
tmp <- sampleN.scABEL(CV = 0.3, theta0 = GMR[l],
design = "2x2x4", targetpower = power[k],
details = FALSE, print = FALSE)
res$n.ABEL[j] <- tmp[["Sample size"]]
res$pwr.ABEL[j] <- round(tmp[["Achieved power"]], 4)
tmp <- sampleN.TOST(CV = 0.3, theta0 = GMR[l],
design = "2x2x4", targetpower = power[k],
details = FALSE, print = FALSE)
res$n.ABE[j] <- tmp[["Sample size"]]
res$pwr.ABE[j] <- round(tmp[["Achieved power"]], 4)
}
}
print(res, row.names = FALSE)
power GMR A2 n.ABEL pwr.ABEL n.ABE pwr.ABE
0.8 0.85 127 128 0.8044 146 0.8014
0.9 0.90 35 34 0.8028 40 0.8100
0.8 0.95 19 18 0.8276 20 0.8202
0.9 1.00 15 14 0.8130 16 0.8225
0.8 1.05 18 18 0.8352 20 0.8290
0.9 1.10 30 30 0.8132 34 0.8097
0.8 1.15 68 68 0.8042 78 0.8041
0.9 1.20 >201 280 0.8019 322 0.8020
0.8 0.85 180 180 0.9002 202 0.9009
0.9 0.90 49 48 0.9002 54 0.9016
0.8 0.95 25 24 0.9124 26 0.9043
0.9 1.00 19 18 0.9101 20 0.9133
0.8 1.05 24 24 0.9182 26 0.9112
0.9 1.10 42 42 0.9067 46 0.9021
0.8 1.15 95 96 0.9009 108 0.9033
0.9 1.20 >201 398 0.9004 444 0.9004
- Wonnemann M, Frömke C, Koch A. Inflation of the Type I Error: Investigations on Regulatory Recommendations for Bioequivalence of Highly Variable Drugs. Pharm Res. 2015;32(1):135–43. doi:10.1007/s11095-014-1450-z.
Meinolf Wonnemann reported in a personal message to Detlew Labes that 10,000 simulations in SAS “ran over night”…
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- Sample Size for Replicate studies arl_stat 2020-06-09 11:41 [Power / Sample Size]
- Nominal α Helmut 2020-06-09 11:49
- Nominal α arl_stat 2020-06-09 12:30
- α 0.05 Helmut 2020-06-09 12:42
- α 0.05 arl_stat 2020-06-11 08:15
- RSABE ≠ ABE: Simulations mandatoryHelmut 2020-06-11 12:26
- RSABE ≠ ABE: Simulations mandatory arl_stat 2020-06-29 07:05
- RSABE ≠ ABE: Simulations mandatoryHelmut 2020-06-11 12:26
- α 0.05 arl_stat 2020-06-11 08:15
- α 0.05 Helmut 2020-06-09 12:42
- Nominal α arl_stat 2020-06-09 12:30
- Nominal α Helmut 2020-06-09 11:49