Sum of residuals ~ ε [Design Issues]

posted by ElMaestro  – Denmark, 2019-12-24 16:10 (1077 d 00:44 ago) – Posting: # 21027
Views: 4,789

Hi both,

❝ I disagree. In the model ε = 0. However in the fit, the sum of residuals is only asymptotically 0. We shouldn’t speak of bias when we obtain something sufficiently close to the numeric resolution of the machine.


Perhaps I am getting it wrong; the sentence above sounds a little off and I have a feeling you may not be discussing the same thing?

The sum of residuals for a fitted normal linear model will be zero. Not asymptotically. If you sum them in R or any other software you will get zero, be it either like zero-zero or effectively zero, depending on the implementation.
This is because the underlying assumption is that epsilon be distributed with mean zero. If we end up with a non-zero sum, I'd say we have screwed up somewhere.

Try sum(resid(M))

Pass or fail!
ElMaestro

Complete thread:

UA Flag
Activity
 Admin contact
22,428 posts in 4,694 threads, 1,598 registered users;
24 visitors (0 registered, 24 guests [including 7 identified bots]).
Forum time: 16:55 CET (Europe/Vienna)

Statistics is the art of never having to say you’re wrong.
Variance is what any two statisticians are at.    C.J. Bradfield

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5