The optional tolerance argument [Design Issues]

posted by ElMaestro  – Denmark, 2019-12-23 15:37 (1610 d 19:41 ago) – Posting: # 21021
Views: 5,790

Hi Hötzi,

❝ ❝ ❝ For observation 8 we have -3.608225e-16, I think,

❝ ❝ I think, is around the "effective zero" for fits in R at default settings on 64- and 32-bit systems.

❝ Yes, it is. ;-)

x    <- -3.608225e-16

❝ zero <- .Machine$double.eps

❝ all.equal(x, zero)

[1] TRUE

❝ zero

[1] 2.220446e-16

This comparison in your context is just a test if the difference is less than about 10-8 since there is an implied tolerance argument for all.equal, the square root of .Machine$double.eps

Effective zero residuals will be somewhat better than 10-8 in practice. They will depend on the approach used to find the solution; in lm I believe the approach is via a qr decomposition of the model matrix, and R by defualt has a tol argument in that function of 10-7 which lm may be leaning on.

Here's an example of a perfect fit, therefore having effective zero residuals:

a=c(rep(1,5), rep(2,5), rep(3,5))
b=c(rep("A",5), rep("B",5), rep("C",5))

It may actually not be the best example since the dependents are all representable inernally in R's (and computer's) binary.

Perhaps this makes a better point:

a=c(rep(pi,5), rep(sin(1.5+pi),5), rep(log(pi),5))
b=c(rep("A",5), rep("B",5), rep("C",5))

Pass or fail!

Complete thread:

UA Flag
 Admin contact
23,034 posts in 4,835 threads, 1,647 registered users;
31 visitors (0 registered, 31 guests [including 6 identified bots]).
Forum time: 12:18 CEST (Europe/Vienna)

Give me a fruitful error any time, full of seeds, bursting with its own corrections.
You can keep your sterile truth for yourself.    Vilfredo Pareto

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz