replicateBE solution with interactions [General Sta­tis­tics]

posted by mittyri – Russia, 2019-12-23 14:30 (482 d 08:00 ago) – Posting: # 21020
Views: 4,077

(edited by mittyri on 2019-12-23 15:05)

Dear Nastya,

whenever possible use simple solutions, at least till the moment you must dive into mixed models galaxy ;-)

And more: interaction terms are not the same in SAS and R
take a look at method.B implementation inside replicateBE package
I just modified it a bit

library(replicateBE)
library(nlme)
alpha <- 0.05
options(contrasts=c("contr.treatment","contr.poly"))
Dataset <- rds01
Dataset$group<- factor(ifelse(as.numeric(levels(Dataset$subject))[Dataset$subject]<31, 1,2))
modB <- lme(log(PK) ~ sequence + group + sequence:group + period + period%in%group + treatment, random = ~1 | subject, na.action = na.omit, data = Dataset)

EMA.B <- summary(modB)
PE <- EMA.B$tTable["treatmentT", "Value"] # exp(PE) = 1.157275
CI <- exp(PE + c(-1, +1) * qt(1 - alpha, EMA.B$tTable["treatmentT", "DF"]) * EMA.B$tTable["treatmentT", "Std.Error"])
# CI = 1.071136 1.250340

Kind regards,
Mittyri

Complete thread:

Activity
 Admin contact
21,419 posts in 4,475 threads, 1,509 registered users;
online 13 (0 registered, 13 guests [including 4 identified bots]).
Forum time: Sunday 23:30 CEST (Europe/Vienna)

Nothing fails like success because you do not learn anything from it.
The only thing we ever learn from is failure.
Success only confirms our superstitions.    Kenneth E. Boulding

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5