Phoenix 6.3 – 8.1 = bear 2.8.6 = PKNCA 0.9.1 [🇷 for BE/BA]
❝ WinNonlin Version 6.4.
AFAIK PHX6.4 is out of support – update.
Are you trying to confuse us – mixed up R and WinNonlin in your table?
I got identical results in the 64bit versions of Phoenix 6.3.0.395 (Mar 2012), 6.4.0.768 (Jul 2014), 7.0.0.2535 (Jun 2016), 8.0.0.3176 (Sep 2017), and 8.1.0.3530 (May 2018).
8.2 (Jun 2019) not installed yet.
Subject Period lin linlog
1 1 9352.581 9317.106
1 2 7965.182 7931.885
2 1 8153.202 8126.054
2 2 11230.876 11214.851
3 1 11156.603 11087.569
3 2 10008.454 9949.515
4 1 6673.169 6637.356
4 2 8652.151 8610.507
❝ The concern is it may impact the 90% CI in border range?
Unlikely, since T and R will be affected in the same way and it will mean out.
❝ is this difference after decimal point accepted?
If (if!) the result is not correct (by comparing with a manual calculation by the formula), that’s a problem. Software not valid(ated).
However, I got exactly the same results – both linear and lin-up/log-down – in
bear
and PKNCA
(clumsy code at the end) like in Phoenix. Hence, I think that the problem lies in your installation or setup.❝ Thanks for the manual calculation provided. It helped me a lot
RTFM. Given on page 56 (2|40) of the “Phoenix WinNonlin 6.4 User’s Guide” (Noncompartmental Analysis | AUC calculation and interpolation formulas).
Concerning your OP:
❝ ❝ ❝ conc_obj <- PKNCAconc(X003, Concentration~Time|Subject)
❝ ❝ ❝ i am getting the error "Rows that are not unique per group and time (column names: Time) found within concentration data"
Similar in Phoenix. If you sort only by
Subject
(i.e., not additionally by Period
) you would get:ERROR 14062: Duplicate time values on data file.
PKNCA
you need to group the data appropriately as well, i.e.,conc_obj <- PKNCAconc(X003, Concentration~Time|Period+Subject)
R-code:
library(RCurl)
library(PKNCA)
url <- getURL("https://bebac.at/downloads/X003.csv")
data <- read.csv(text = url)
attach(data) # Convenience
dose <- 1 # Give the actual one here (identical for all subjects)
subject <- unique(Subject)
period <- unique(Period)
dose <- data.frame(Subject = rep(subject, each = length(period)),
Period = period, Time = 0, Dose = dose)
data$include_auclast <- TRUE
intervals <- data.frame(start = rep(0, length(subject)*length(period)),
end = Inf, auclast = TRUE)
conc_obj <- PKNCAconc(data, Concentration ~ Time|Period + Subject)
dose_obj <- PKNCAdose(dose, Dose ~ Time|Period + Subject)
data_obj <- PKNCAdata(conc_obj, dose_obj, intervals = intervals)
detach(data)
PKNCA.options(auc.method = "lin up/log down")
results_obj <- pk.nca(data_obj)
res.linlog <- unique(results_obj$result[c(4, 3, 6)])
names(res.linlog)[3] <- "linlog"
PKNCA.options(auc.method = "linear")
results_obj <- pk.nca(data_obj)
res.lin <- unique(results_obj$result[c(4, 3, 6)])
names(res.lin)[3] <- "lin"
auc <- merge(res.lin, res.linlog)
print(auc, row.names = FALSE)
Subject Period lin linlog
✔
1 1 9352.581 9317.106
1 2 7965.182 7931.885
2 1 8153.202 8126.054
2 2 11230.876 11214.851
3 1 11156.603 11087.569
3 2 10008.454 9949.515
4 1 6673.169 6637.356
4 2 8652.151 8610.507
Dif-tor heh smusma 🖖🏼 Довге життя Україна!
Helmut Schütz
The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes
Complete thread:
- PKNCA Package usage sury 2019-11-20 10:21 [🇷 for BE/BA]
- Data? Helmut 2019-11-20 10:27
- PKNCA Package usage yjlee168 2019-11-20 14:35
- PKNCA Package usage sury 2019-11-21 05:10
- Which package? Helmut 2019-11-21 14:53
- Which package? sury 2019-11-22 07:23
- Phoenix 6.3 – 8.1 = bear 2.8.6 = PKNCA 0.9.1Helmut 2019-11-22 11:22
- Which package? sury 2019-11-22 07:23
- Which package? Helmut 2019-11-21 14:53
- PKNCA Package usage sury 2019-11-21 05:10