t-test & Welch-test [Power / Sample Size]

posted by Helmut Homepage – Vienna, Austria, 2019-09-14 02:16 (1853 d 20:43 ago) – Posting: # 20596
Views: 6,954

Hi Rocco,

❝ Where does the formula on slide 10.83 in bebac.at/lectures/Leuven2013WS2.pdf for CI for parallel design come from? I cannot seem to find reference anywhere.


Honestly, I don’t remember why I simplified the commonly used formula.
Algebra:$$s\sqrt{\tfrac{n_1+n_2}{n_1n_2}}=\sqrt{s^2(1/n_1+1/n_2)}\;\tiny{\square}$$ Comparison with the data of the example.The formula for Satterthwaite’s approximation of the degrees of freedom given in slide 11 contained typos (corrected in the meantime). Of course,$$\nu\approx\frac{\left(\frac{{s_{1}}^{2}}{n_1}+\frac{{s_{2}}^{2}}{n_2}\right)^2}{\frac{{s_{1}}^{4}}{n{_{1}}^{2}(n_1-1)}+\frac{{s_{2}}^{4}}{n{_{2}}^{2}(n_2-1)}}$$Satterthwaite’s approximation adjusts both for unequal variances and group sizes. The conventional t-test is fairly robust against the former but less so for the latter.
In the [image]-function t.test() var.equal = FALSE is the default because:

Dif-tor heh smusma 🖖🏼 Довге життя Україна! [image]
Helmut Schütz
[image]

The quality of responses received is directly proportional to the quality of the question asked. 🚮
Science Quotes

Complete thread:

UA Flag
Activity
 Admin contact
23,249 posts in 4,885 threads, 1,652 registered users;
69 visitors (0 registered, 69 guests [including 6 identified bots]).
Forum time: 22:59 CEST (Europe/Vienna)

The rise of biometry in this 20th century,
like that of geometry in the 3rd century before Christ,
seems to mark out one of the great ages or critical periods
in the advance of the human understanding.    R.A. Fisher

The Bioequivalence and Bioavailability Forum is hosted by
BEBAC Ing. Helmut Schütz
HTML5